高数,求极限若f'(x0)=1,则lim h→0 = [ f(x0+2h)-f(x0) ] / h若f'(x0)=1,则
高数,求极限若f'(x0)=1,则lim h→0 = [ f(x0+2h)-f(x0) ] / h若f'(x0)=1,则
若f′(x0)=-2,则lim[f(x0+h)-f(x0-h)]/h=
已知函数f(x)在x0可导,且lim(h→0)h/[f(x0-2h)-f(x0)]=1/4,则f‘(x0)=?
设f'(x0)=3,利用导数定义计算极限.1)lim h→0 [f(x0+2h)-f(x0)] / h ;lim h→0
设函数f(x)在点x0处可导,且f'(x0)=2,则lim(h→0)[f(x0-h/2)-f(x0)]/h等于多少
若f′(x0)=-3,则lim[f(x0+h)-f (x0-3h)]/h=
设函数f(x)在x=x0处可导,则lim(h>0)[f(x0)-f(x0-2h)]/h
导数极限形式的证明1)f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0) 2)f'(x)=lim(h
设f(X)在x=x0处具有二阶导数f''(x0),试证:lim(h→0)(f(x0+h)-2f(x0)+f(x0-h))
设f(x0)的导数是-1,则lim h/(f(x0-2h)-f(x0))=?x0是趋近零
lim h趋于0时,(f(x0+h)-f(x0-h))/2h=f`(x0) 看不懂
已知函数f(x)在点 x0处可导,且f ′(x0)=3,则lim f(x0+2h)-f(x0)/h等于