作业帮 > 数学 > 作业

无穷小量问题设f(x)、g(x)连续,x→0时,f(x)与g(x)同阶但非等价无穷小,令F(x)=∫下0上x f(x-t

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 23:22:15
无穷小量问题
设f(x)、g(x)连续,x→0时,f(x)与g(x)同阶但非等价无穷小,令F(x)=∫下0上x f(x-t)dt G(x)=∫下0上1 xg(xt)dt,则当x→0时,F(x)是G(x)同阶但非等价无穷小.怎么证明?
无穷小量问题设f(x)、g(x)连续,x→0时,f(x)与g(x)同阶但非等价无穷小,令F(x)=∫下0上x f(x-t
你看看能满意不?