无穷小量问题设f(x)、g(x)连续,x→0时,f(x)与g(x)同阶但非等价无穷小,令F(x)=∫下0上x f(x-t
无穷小量问题设f(x)、g(x)连续,x→0时,f(x)与g(x)同阶但非等价无穷小,令F(x)=∫下0上x f(x-t
同阶无穷小量的两个函数f(x),g(x),在x→0,收敛速度一样吗? 等价无穷小呢?
比较等价无穷小量与等价无穷大量的阶G(x)=F(x)+0 (F(x))中F(x)是主部,但0(F(x))是什么意思
f(x)=5^x+7^x-2,则当x→0时,A.f(x)与x是同阶但非等价无穷小,B,f(x)是比x高阶无穷小,请给出一
f(x)=2^x+3^x-2,当x趋近0时,有 f(x)与x同阶但非等价无穷小,为什么
设f(x)=3xln(1-x^2),g(x)=sin^2,则x趋于0时f(x)是g(x)的同阶还是等价还是高阶无穷小?
设f(x)=2^x+3^x-2,则当x趋于0时,f(x)是x的同阶但非等价无穷小 有一步不太明白
设f(x)=(2^x)-1,当x趋近0时f(x)是x的() A,高阶无穷小B,低阶无穷小C,等价无穷小 D,同阶但不等价
设 x 趋近于0时,f(x)与x^2是等价无穷小量,ln(1+sinx^4)是比x^n f (x)高阶的无穷小量而x^n
为什么当x趋近于0时,f(x)=2^x+3^x-2与x同阶但是非等价无穷小呢呢
为什么当x趋近于0时,f(x)=2^x+3^x-2与x同阶但是非等价无穷小呢
f''(x)连续,当x→0时,F(x)=∫x0(x∧2-t∧2)f''(t)dt的导数F'(x)与x∧2为等价无穷小,求