来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 18:00:19
求解一道有关线性代数矩阵乘法的题
已知P=[-29 -42 Q=[-2 3
14 20] 1 -2]
(1)求 矩阵R 使得 R^3=(Q^-1)PQ
(2)求 矩阵A 使得 A^3=P
(1)注意到Q的两列分别是P的对应于特征值-8,-1的特征向量,所以(Q^-1)PQ就是如下的对角阵
(-8 0
0 -1)
所以很容易写出R如下:
(-2 0
0 -1)
(2)改写第一问可得到P=Q(R^3)(Q^-1)=[QR(Q^-1)]^3
所以可取A=QR(Q^-1)直接计算可得A为
(-5 -6
2 2 )