请问,圆锥体积等于底乘高的三分之一是怎么证明的?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 20:12:41
请问,圆锥体积等于底乘高的三分之一是怎么证明的?
为什么是三分之一,而不是其他?
一楼二楼的,你们有没有简单的方法,
三楼四楼的,你们知道什么叫做“证明”吗?你们那个只叫做试验,
为什么是三分之一,而不是其他?
一楼二楼的,你们有没有简单的方法,
三楼四楼的,你们知道什么叫做“证明”吗?你们那个只叫做试验,
初中的话可以用类似于微积分的方法证明.
设圆锥高为h,底部半径为r,把圆锥等分为k份,每份看做一个小圆柱.
则第n份圆柱的高为h/k,半径为n*r/k.
则第k份圆柱的体积为h/k*pi*(n*r/k)^2=Pi*h*r^2*n^2/k^3
总的体积为Pi*h*r^2*(1+2^2+3^2+...+k^2)/k^3
而1+2^2+3^2+...+k^2=k*(k+1)*(2k+1)/6
则总体积为Pi*h*r^2*(1+1/k)*(2+1/k)/6
K越大,这个总体积越接近于圆锥的体积.
当K为无穷大时,则1/k等于0.即总体积为Pi*h*r^2/3,即为圆柱体积的三分之一.
设圆锥高为h,底部半径为r,把圆锥等分为k份,每份看做一个小圆柱.
则第n份圆柱的高为h/k,半径为n*r/k.
则第k份圆柱的体积为h/k*pi*(n*r/k)^2=Pi*h*r^2*n^2/k^3
总的体积为Pi*h*r^2*(1+2^2+3^2+...+k^2)/k^3
而1+2^2+3^2+...+k^2=k*(k+1)*(2k+1)/6
则总体积为Pi*h*r^2*(1+1/k)*(2+1/k)/6
K越大,这个总体积越接近于圆锥的体积.
当K为无穷大时,则1/k等于0.即总体积为Pi*h*r^2/3,即为圆柱体积的三分之一.
请问,圆锥体积等于底乘高的三分之一是怎么证明的?
请问圆锥体积公式怎么推出三分之一的?
请问怎么推导出圆锥的体积,为什么圆锥的体积等于等底等高圆柱体积的1/3 怎么证明呢?
如何证明圆锥体积是等底等高圆柱体积的三分之一
圆锥的体积等于什么圆柱体积的三分之一
为什么圆锥的体积等于圆柱体积的三分之一意义
判断:圆锥的体积等于圆柱体积的三分之一
圆锥的体积等于圆柱体积的三分之一,
一个圆锥的体积等于圆柱体积三分之一,那么这个圆锥与圆柱( )
判断 1、圆锥的体积是圆柱体积的三分之一 2、圆柱的体积一定大于圆锥的体积
圆锥体积是不是等于与它等底等高的长方体的体积的三分之一
圆柱的体积等于和它等底等高的圆锥体积的三分之一