已知等比数列an中a1=1,公比为x(x〉0)其前n项和为Sn,bn=an/Sn,求lim(n→○○)bn
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 11:52:14
已知等比数列an中a1=1,公比为x(x〉0)其前n项和为Sn,bn=an/Sn,求lim(n→○○)bn
an为等比数列
an=a1*q^(n-1)=x^(n-1)
sn=a1(q^n-1)/(q-1)=(x^n-1)/(x-1)
那么,
bn=an/sn=(x-1)x^(n-1)/(x^n-1)
那么,
n→∞
lim bn
=lim (x-1)x^(n-1)/(x^n-1)
=lim (x-1)x^(n-1) / (x-1)(x^(n-1)+x^(n-2)+…+x^2+x+1)
=lim x^(n-1)/(x^(n-1)+x^(n-2)+…+x^2+x+1)
上下同时除以x^(n-1)
=lim 1/(1+1/x+…+1/x^(n-1))
=lim 1/ [1*((1/x)^n-1)/((1/x)-1)]
=lim ((1/x)-1) / ((1/x)^n-1)
=((1/x)-1) / (-1)
=1-1/x
=(x-1)/x
有不懂欢迎追问
an=a1*q^(n-1)=x^(n-1)
sn=a1(q^n-1)/(q-1)=(x^n-1)/(x-1)
那么,
bn=an/sn=(x-1)x^(n-1)/(x^n-1)
那么,
n→∞
lim bn
=lim (x-1)x^(n-1)/(x^n-1)
=lim (x-1)x^(n-1) / (x-1)(x^(n-1)+x^(n-2)+…+x^2+x+1)
=lim x^(n-1)/(x^(n-1)+x^(n-2)+…+x^2+x+1)
上下同时除以x^(n-1)
=lim 1/(1+1/x+…+1/x^(n-1))
=lim 1/ [1*((1/x)^n-1)/((1/x)-1)]
=lim ((1/x)-1) / ((1/x)^n-1)
=((1/x)-1) / (-1)
=1-1/x
=(x-1)/x
有不懂欢迎追问
已知等比数列an中a1=1,公比为x(x〉0)其前n项和为Sn,bn=an/Sn,求lim(n→○○)bn
在等比数列﹛an﹜中,首项a1=1,前n项和为Sn,公比x>0,设bn=an/Sn
已知等比数列an,首项bn满足bn=log3an,其前n项和为Sn
已知数列{an}是等比数列,首项a1=8,公比q>0,令bn=log2an,设sn为{bn}的前n项和,若
已知数列an满足bn=an-3n,且bn为等比数列,求an前n项和Sn
设等比数列{an}的前n项和为Sn 等比数列{bn}的前n项和Tn 已知数列{bn}的公比q>0 a1=b1=1 S5=
设等差数列an的前n项和为Sn,等比数列bn的前n项和为Tn,已知数列bn的公比为q(q>0),a1=b1=1,S5=4
已知数列an为等比数列,且首相a1=1/2,公比为1/2若bn=-log2an/an,求数列bn的前n项和sn
设(an)是等差数列,a1=1,Sn是前n项和,(bn)为等比数列其公比q的绝对值小于1
数列{an}为等差数列,an为正整数,其前n项和为Sn,数列{bn}为等比数列,且a1=3,b1=1,数列{bn}是公比
已知{an}是以正数q为公比的等比数列,a1=8,又bn=lg2an,数列{bn}前n项和Sn中仅S7最大,求q的取值范
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知数列{bn}的公比为q(q>0),a1=b1=