f (x)=x^4+ax^3+2x²+b,若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:23:40
f (x)=x^4+ax^3+2x²+b,若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b的取值范围
但是很难想,
但是很难想,
f (x)=x⁴+ax³+2x²+b,若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成立,求b的取值范围
f′(x)=4x³+3ax²+4x=x(4x²+3ax+4)
由于-2≦a≦2,故a²≦4,因此4x²+3ax+4的判别式Δ=9a²-64≦36-64=-280;于是f′(x)与x同号:当x0;故在-2≦a≦2的条件下,
f(x)在区间[-1,0]上单调减;minf(x)=f(0)=b;maxf(x)=f(-1)=1-a+2+b=3-a+b;故为使不等式
f(x)≤1在[-1,0]上恒成立,就应使f(x)的最大值3-a+b≦1,即应使b≦a-2;由于-2≦a≦2,
故-4≦a-2≦0;故应取b≦-4.
f′(x)=4x³+3ax²+4x=x(4x²+3ax+4)
由于-2≦a≦2,故a²≦4,因此4x²+3ax+4的判别式Δ=9a²-64≦36-64=-280;于是f′(x)与x同号:当x0;故在-2≦a≦2的条件下,
f(x)在区间[-1,0]上单调减;minf(x)=f(0)=b;maxf(x)=f(-1)=1-a+2+b=3-a+b;故为使不等式
f(x)≤1在[-1,0]上恒成立,就应使f(x)的最大值3-a+b≦1,即应使b≦a-2;由于-2≦a≦2,
故-4≦a-2≦0;故应取b≦-4.
f (x)=x^4+ax^3+2x²+b,若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,0]上恒成
设函数f(x)=x²+ax+b(a,b∈R),已知不等式|f(x)|≤|2x²+4x-6|对任意的实
已知函数f(x)=4x^2+1/x,(x≠0) 设函数g(x)=ax^3+1/x,(a>0),若对于任意的x∈(0,2]
已知二次函数f(x)=2x²+ax+b(a,b为常数),对于任意x∈R,都有f(1-x)=f(x+3
已知函数f(x)=(e^x)/(x^2-ax+1)1.求单调区间2.若不等式f(x)大于等于x,对于任意的x属于[0,a
已知函数f(x)=ax^3-3/2(a+2)x^2+6x+b在x=2处取得极值,若对任意x属于[1,4],不等式f(x)
若二次函数f(x)=x^2+ax+b,对于任意的实数x都有f(1+x)=f(1-x)成立.
已知实数a不等于0函数f(x)={ax(x-2)^2}x属于R若对任意x属于[-2,1]不等式f(x
设f(x)是定义在R上的增函数,如果不等式f(1-ax)<f(2-a),对于任意x∈[0,1]都成立,求实数a的取值范围
已知二次函数f(x)=ax^2+x,若对于任意x1,x2属于R恒成立,不等式f(x)小于0的解集为A.
对于任意a∈[-1,1] ,函数f(x)=ax^2+(2a-4)x+3-a>0恒成立,求x的取值范围
已知函数f(x)=x平方+aln(x+1),若对于任意x∈[1,2],不等式f(x)≤x恒成立,求实数a的取值范围?