(2011•江苏二模)若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是29
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 05:12:33
(2011•江苏二模)若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是
2 |
9 |
由题意知,本题是一个古典概型,
试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,
而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)
(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,
根据古典概型概率公式得到P=
8
36=
2
9,
故答案为:
2
9
试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,
而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)
(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,
根据古典概型概率公式得到P=
8
36=
2
9,
故答案为:
2
9
(2011•江苏二模)若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是29
(1)若以连续两次掷骰子分别得到的点数m,n作为点P的坐标(m,n),求:点P落在圆x2+y2=18内的概率.
若以连续掷两次骰子分别得到的点数m,n作为点P的坐标,求点P落在圆x2+y2=16外部的概率是( )
若把连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=25外的概率是( )
若以连续掷两次骰子分别得到点数m,n作为点p的坐标,则点p落在圆x^2 y^2=16内的概率是?
连续掷两次骰子,以先后得到的点数m,n作为点P(m,n)的坐标,那么点P落在圆x2+y2=17外
若以连续掷两次骰子分别得到点数m,n作为点p的坐标,则点p落在圆x^2+y^2=18内的概率是
连续掷两次骰子,以先后得到的点数m,n作为点P(m,n)的坐标,那么点P落在圆x2+y2=17外部的概率为 ___ .
若以连续掷两次骰子分别得到点数m,n作为点p的坐标,则点p落在圆x^2 y^2=17外的概率是?
若以连续两次骰子分别得到的点数m,n作为点P落在圆x²+y²=25内地概率是____
连续掷两次骰子,以先后得到的点数m,n作为点P(m,n)的坐标,那么点P落在圆x^2+y^2=17外部的概率为( )
若以连续掷两次骰子分别得到的点数M,N作为点P的坐标