初二下几何题及答案
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 06:29:02
初二下几何题及答案
1、如图,在正方形ABCD中,E为AD中点,EF⊥EC交AB于F,连接FC ,求证△AEF∽△ECF
证明:延长BA和CE交于点G
E为AD中点
则AE=1/2AD=BC
FE⊥GC
FE是BC的垂直平分线
所以△FGE≌△FCE
∠G=∠FCE
∠G=∠FEA(等角的余角相等)
∠FEA=∠FCE
∠EAF=∠FEC
所以
△AEF∽△ECF
2、在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是-----------.
过A作
AF⊥BC于F
BF=1/2BC=10/2=5
根据勾股定理
AF²+BF²=AB²
AF=12
S△ABC=1/2×BC×AF=1/2×10×12=60
过B作BG⊥AC
DE‖BG
D为AB中点
DE=1/2BG
S△ABC=1/2×AC×BG
60=1/2×13×BG
BG=120/13
DE=1/2BG=60/13
3、如图,已知△ABC中,AB=AC,AD=BD=BC,则∠A=______(直接写结论,不要证明)
如图.已知△ABC中,AB=AC,AD=BD=BC,则∠A=__36度____(直接写结论,不要证明)
∠A=∠ABD
∠C=∠BDC=2∠A
∠A+∠ABC+∠C=∠A+2∠A+2∠A=180
4.如图所示,△ABC中,AB=AC,D是BC上一点,∠BAD=30°,E是AC上一点,AD=AE,求∠EDC的度数
如图所示,△ABC中,AB=AC,D是BC上一点,∠BAD=30°,E是AC上一点,AD=AE,求∠EDC的度数.
根据题意
AD=AE
∠ADE=∠AED
AB=AC
∠B=∠C
∠ADE+∠EDC=∠B+30
∠AED+∠EDC=∠C+30
∠EDC+∠C+∠EDC=∠C+30
2∠EDC=30
∠EDC=15度
5、△ABC中,AD平分∠BAC,DE是BC的中垂线,E为垂足,过D作DM垂直AB于M,DN垂直AC交AC的延长线于N,求证BM=CN
证明:AD平分∠BAC
DM⊥AB,DN⊥AC
所以DM=DN
连接DB,DC
DE垂直平分BC
那么DB=DC
DM=DN
Rt△DMB≌Rt△DNC
BM=CN
6、如图,在△ABC中,∠C为直角,∠A=30°,分别以AB、AC为边在△ABC的外侧作正△ABE与正△ACD,DE与AB交于F.求证:EF=FD
证明:
过E做EG⊥AB
交AB于G
连接GD交AB于H,GC
△EBA为正△
那么G为AB中点
GC=1/2AB=GA
∠GCA=∠GAC=30
∠DCA=∠DAC=60
两式相加
∠DCG=∠DAG=90
GC=GA
GD=GD
△DCG≌△DAG
∠GDC=∠GDA
DG为∠CDA的平分线
那么
我们可以知道
DG垂直平分AC
H为AC中点
GH‖BC
∠EAD=60
∠BAC=30
∠EAC=90
∠BCA=90
BC‖EA
GH‖AE(1)
同理
EG‖DA(2)
根据(1)(2)
那么
四边形ADGE为平行四边形
GA和DE是对角线
所以
EF=FD
7、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.
证明 1.PQ//AE 2.AP=BQ
证明:
△ABC和△CDE为等边三角形
AC=BC(1)
∠BCA=∠DCE=60度
∠BCA+∠BCD=∠DCE+∠BCD
∠ACD=∠BCE(2)
CD=CE(3)
由(1)、(2)、(3)
△ACD≌△BCE(SAS)
∠DAC=∠CBE(4)
AC=BC(5)
∠ACB+∠BCD+∠DCE=180
∠ACB=∠DCE=60
所以
∠BCD=60
∠ACB=∠BCD=60(6)
由(4)(5)(6)
△ACP≌△BCQ(ASA)
PC=CQ
∠BCD=60
△PCQ为等边三角形
∠QPC=60
∠ACB=60
PQ//AE
∠DAC=∠CBE
AC=BC
∠ACP=∠BCQ=60
△ACP≌△BCQ(ASA)
AP=BQ
8、BP、CP是三角形ABC的外角平分线
求证:AP是角BAC的角平分线
证明:过点P分别作
PG⊥AB
PE⊥BC
PF⊥AC
交点分别为G,E,F
BP和CP分别为角平分线
PG=PE
PE=PF
所以
PG=PF
所以
PA平分角BAC
图片太多,还有一些题目,需要的话
我传给你
证明:延长BA和CE交于点G
E为AD中点
则AE=1/2AD=BC
FE⊥GC
FE是BC的垂直平分线
所以△FGE≌△FCE
∠G=∠FCE
∠G=∠FEA(等角的余角相等)
∠FEA=∠FCE
∠EAF=∠FEC
所以
△AEF∽△ECF
2、在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是-----------.
过A作
AF⊥BC于F
BF=1/2BC=10/2=5
根据勾股定理
AF²+BF²=AB²
AF=12
S△ABC=1/2×BC×AF=1/2×10×12=60
过B作BG⊥AC
DE‖BG
D为AB中点
DE=1/2BG
S△ABC=1/2×AC×BG
60=1/2×13×BG
BG=120/13
DE=1/2BG=60/13
3、如图,已知△ABC中,AB=AC,AD=BD=BC,则∠A=______(直接写结论,不要证明)
如图.已知△ABC中,AB=AC,AD=BD=BC,则∠A=__36度____(直接写结论,不要证明)
∠A=∠ABD
∠C=∠BDC=2∠A
∠A+∠ABC+∠C=∠A+2∠A+2∠A=180
4.如图所示,△ABC中,AB=AC,D是BC上一点,∠BAD=30°,E是AC上一点,AD=AE,求∠EDC的度数
如图所示,△ABC中,AB=AC,D是BC上一点,∠BAD=30°,E是AC上一点,AD=AE,求∠EDC的度数.
根据题意
AD=AE
∠ADE=∠AED
AB=AC
∠B=∠C
∠ADE+∠EDC=∠B+30
∠AED+∠EDC=∠C+30
∠EDC+∠C+∠EDC=∠C+30
2∠EDC=30
∠EDC=15度
5、△ABC中,AD平分∠BAC,DE是BC的中垂线,E为垂足,过D作DM垂直AB于M,DN垂直AC交AC的延长线于N,求证BM=CN
证明:AD平分∠BAC
DM⊥AB,DN⊥AC
所以DM=DN
连接DB,DC
DE垂直平分BC
那么DB=DC
DM=DN
Rt△DMB≌Rt△DNC
BM=CN
6、如图,在△ABC中,∠C为直角,∠A=30°,分别以AB、AC为边在△ABC的外侧作正△ABE与正△ACD,DE与AB交于F.求证:EF=FD
证明:
过E做EG⊥AB
交AB于G
连接GD交AB于H,GC
△EBA为正△
那么G为AB中点
GC=1/2AB=GA
∠GCA=∠GAC=30
∠DCA=∠DAC=60
两式相加
∠DCG=∠DAG=90
GC=GA
GD=GD
△DCG≌△DAG
∠GDC=∠GDA
DG为∠CDA的平分线
那么
我们可以知道
DG垂直平分AC
H为AC中点
GH‖BC
∠EAD=60
∠BAC=30
∠EAC=90
∠BCA=90
BC‖EA
GH‖AE(1)
同理
EG‖DA(2)
根据(1)(2)
那么
四边形ADGE为平行四边形
GA和DE是对角线
所以
EF=FD
7、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.
证明 1.PQ//AE 2.AP=BQ
证明:
△ABC和△CDE为等边三角形
AC=BC(1)
∠BCA=∠DCE=60度
∠BCA+∠BCD=∠DCE+∠BCD
∠ACD=∠BCE(2)
CD=CE(3)
由(1)、(2)、(3)
△ACD≌△BCE(SAS)
∠DAC=∠CBE(4)
AC=BC(5)
∠ACB+∠BCD+∠DCE=180
∠ACB=∠DCE=60
所以
∠BCD=60
∠ACB=∠BCD=60(6)
由(4)(5)(6)
△ACP≌△BCQ(ASA)
PC=CQ
∠BCD=60
△PCQ为等边三角形
∠QPC=60
∠ACB=60
PQ//AE
∠DAC=∠CBE
AC=BC
∠ACP=∠BCQ=60
△ACP≌△BCQ(ASA)
AP=BQ
8、BP、CP是三角形ABC的外角平分线
求证:AP是角BAC的角平分线
证明:过点P分别作
PG⊥AB
PE⊥BC
PF⊥AC
交点分别为G,E,F
BP和CP分别为角平分线
PG=PE
PE=PF
所以
PG=PF
所以
PA平分角BAC
图片太多,还有一些题目,需要的话
我传给你