作业帮 > 数学 > 作业

已知对于任意的实数a(a≠0)和b,不等式|a|*(|x-1|+|x-2|)≤|a+2b|+|a-b|恒成立,求实数x的

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:47:51
已知对于任意的实数a(a≠0)和b,不等式|a|*(|x-1|+|x-2|)≤|a+2b|+|a-b|恒成立,求实数x的
已知对于任意的实数a(a≠0)和b,不等式|a|*(|x-1|+|x-2|)≤|a+2b|+|a-b|恒成立,求实数x的范围
已知对于任意的实数a(a≠0)和b,不等式|a|*(|x-1|+|x-2|)≤|a+2b|+|a-b|恒成立,求实数x的
|x-1|+|x-2|≤(|a+2b|+|a-b|)/|a| |1+2b/a|+|1-b/a|≥3/2 |x-1|+|x-2|≤3/2
由绝对值的概念知.x的取值范围为 3/4≤x≤9/4
再问: 这个对的么3/2 怎么来的啊
再答: 对。令b/a=t ,则有|1+2b/a|+|1-b/a|=|1+2t|+|1-t| 3/2是|1+2t|+|1-t|的最小值啊。