设4阶矩阵A=(α,-γ2,γ3,-γ4),B=(β,γ2,-γ3,γ4),其中α,β,γ2,γ3,γ4均为4维列向量
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 09:08:01
设4阶矩阵A=(α,-γ2,γ3,-γ4),B=(β,γ2,-γ3,γ4),其中α,β,γ2,γ3,γ4均为4维列向量
且已知行列式|A|=4,|B|=1,则行列式|A-B|等于多少?
且已知行列式|A|=4,|B|=1,则行列式|A-B|等于多少?
其实这道题目就是 拉普拉斯展开啊,按第一列展开.
若矩阵C为n阶方阵,那么 |kC| = k^n * |C|
1) |-B| = |B| = 1;
2)-B = (β,-γ2,γ3,-γ4) 和A的后面三列是一样的
3)A-B = (α-β,-2*γ2,2*γ3,-2γ4),后三列除了都乘以了2,和A,-B都一样
4)将|A|,|-B|,|A-B|,分别按第一列 拉普拉斯 展开,
你就会发现 |A-B| = (|A| +|-B|) * 2^3 = 40
若矩阵C为n阶方阵,那么 |kC| = k^n * |C|
1) |-B| = |B| = 1;
2)-B = (β,-γ2,γ3,-γ4) 和A的后面三列是一样的
3)A-B = (α-β,-2*γ2,2*γ3,-2γ4),后三列除了都乘以了2,和A,-B都一样
4)将|A|,|-B|,|A-B|,分别按第一列 拉普拉斯 展开,
你就会发现 |A-B| = (|A| +|-B|) * 2^3 = 40
设4阶矩阵A=(α,-γ2,γ3,-γ4),B=(β,γ2,-γ3,γ4),其中α,β,γ2,γ3,γ4均为4维列向量
设4阶矩阵A=[α,γ2,γ3,γ4],B=[β,γ2,γ3,γ4],其中α,β,γ2,γ3,γ4均为4维列向量,且已知
设矩阵A=(α,2γ2 3γ3),B=(β,γ2,γ3)其中α,β,γ2.γ3均为3维列向量,且/A/=18./B/=2
设α,β,γ2,γ3,γ4均为4维列向量,A=(α,γ2,γ3,γ4)和B=(β,γ2,γ3,γ4)为4阶方阵,若行列式
设三阶矩阵A=(α,2γ1,3γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2均为三维列向量,|A|=15,|B|
已知3阶方阵A=(α,β,γ),B=(α+β+γ,α+2β+4γ,α+3β+9γ),其中α,β,γ均为3维列向量,|A|
设3×3矩阵 A=(α,β,γ),其中α,β,γ都是3维列向量,若|A|=a,则行列式|α+2β,γ,α+β|
设αβγ1,γ2,γ3都是4维列向量,A=(α,γ1,γ2,γ3),B=(β,γ1,2γ2,3γ3),如果已知|A|=2
设α,β,γ1,γ2,γ3 都是4维列向量,A=(a,γ1,γ2,γ3),B=(β,γ1,2γ2,3γ3 ),如果已知|
设3阶矩阵A=(a1,a2,a3),其中a1,a2,a3均为3维列向量,且|B|=2,矩阵B=(a1+a2+a3,a1+
设A,B为3阶方阵,B的列向量都是线性方程组Ax=β的解向量,其中β=(1,2,3)T.则矩阵(AB)*的秩
设a1,a2,a3均为3维列向量,矩阵A=(a1,a2,a3)并且|A|=1,B=(a1+a2+a3,a1+2a2+4a