已知数列{an}的通项公式为an=6n-5 (n为奇数),4 (n为偶数) .(上面为分段函数).求数列{an}的前n项
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 03:09:59
已知数列{an}的通项公式为an=6n-5 (n为奇数),4 (n为偶数) .(上面为分段函数).求数列{an}的前n项和.
奇数项新数列An1=12n-11
前n项和Sn1=(1+12n-11)n/2=n(6n-5)
偶数项新数列An2=4^n
前n项和Sn2=4(1-4^n)/(1-4)=4(4^n-1)/3
n为奇数时
Sn等于(n+1)/2个奇数项和加(n-1)/2个偶数项和
用(n+1)/2替换Sn1=n(6n-5)中的n
Sn1=(n+1)/2×(6(n+1)/2+5)=(3n-2)(n+1)/2
用(n-1)/2替换Sn2=4(4^n-1)/3中的n
Sn2=4(4^((n-1)/2)-1)/3=(2^(n+1)-4)/3
Sn(奇)=(3n-2)(n+1)/2+(2^(n+1)-4)/3
n为偶数时
Sn等于n/2个奇数项和加n/2个偶数项和
用n/2替换Sn1=n(6n-5)中的n
Sn1=n/2×(6n/2-5)=n(3n-5)/2
用n/2替换Sn2=4(4^n-1)/3中的n
Sn2=4(4^(n/2)-1)/3=(2^(n+2)-4)/3
Sn(偶)=n(3n-5)/2+(2^(n+2)-4)/3
前n项和Sn1=(1+12n-11)n/2=n(6n-5)
偶数项新数列An2=4^n
前n项和Sn2=4(1-4^n)/(1-4)=4(4^n-1)/3
n为奇数时
Sn等于(n+1)/2个奇数项和加(n-1)/2个偶数项和
用(n+1)/2替换Sn1=n(6n-5)中的n
Sn1=(n+1)/2×(6(n+1)/2+5)=(3n-2)(n+1)/2
用(n-1)/2替换Sn2=4(4^n-1)/3中的n
Sn2=4(4^((n-1)/2)-1)/3=(2^(n+1)-4)/3
Sn(奇)=(3n-2)(n+1)/2+(2^(n+1)-4)/3
n为偶数时
Sn等于n/2个奇数项和加n/2个偶数项和
用n/2替换Sn1=n(6n-5)中的n
Sn1=n/2×(6n/2-5)=n(3n-5)/2
用n/2替换Sn2=4(4^n-1)/3中的n
Sn2=4(4^(n/2)-1)/3=(2^(n+2)-4)/3
Sn(偶)=n(3n-5)/2+(2^(n+2)-4)/3
已知数列{an}的通项公式为an=6n-5 (n为奇数),4 (n为偶数) .(上面为分段函数).求数列{an}的前n项
已知数列{an}的通项公式为an=6n-5 (n为奇数),2^n(n为偶数) .(上面为分段函数).求数列{an}的前n
已知数列{an}的通项公式为an=6n-5 (n为奇数),4 (n为偶数) .(上面为分段函数).求前2n项和s2n
已知数列(an)通项公式an=(6n)-5(n为偶数)an=4^n(n为奇数),求(an)的前n项和
已知数列{an}的通项公式an=6n+5,n为奇数4^n,n为偶数,则{an}的前n项和为.
已知数列{An}的通项公式An=6n-5(n为奇数),4(n为偶数),求其前n项和Sn
已知数列{An}的通项公式为An=-6n+5(n为奇数)/2^n,n为偶数,求该数列的前n项和Sn,
数列an的通项公式an=6n-5(n为奇数),an=2的n次方(n为偶数),求数列an的前n项的和Sn
已知数列{an}的通项an={6n-5(n为奇数)2^n(n为偶数),求其前n项和Sn
已知数列(an)通项公式an=(6n)-5(n为奇数)an=2^n(n为偶数),求(an)的前n项和和Sn.
已知数列{an}的通项公式a=2n,n为偶数,1-3n,n为奇数,求该数列的前100项和
已知数列an 通项公式an=6n-5 n为奇数 an=4 n为偶数 求前几项的和?