平面向量基本定理在△AOB中,向量OA=a,向量OB=b,设向量AM=2向量MB,向量ON=3向量NA,而OM与BN相交
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:06:06
平面向量基本定理
在△AOB中,向量OA=a,向量OB=b,设向量AM=2向量MB,向量ON=3向量NA,而OM与BN相交于点P,试用a、b表示向量OP.
在△AOB中,向量OA=a,向量OB=b,设向量AM=2向量MB,向量ON=3向量NA,而OM与BN相交于点P,试用a、b表示向量OP.
向量OP=ON+NP
= ON +mNB(因为向量NP与向量NB共线,所以存在唯一实数m,使得NP =mNB)
=3a/4+m(OB-ON)
=3a/4+m(b-3a/4)
=(3/4-3m/4)a+mb.
另一方面,
因为向量OP与向量OM共线,所以存在唯一实数n,使得OP =nOM,
向量OP =nOM
=n(OA+AM)
= n(OA+2AB/3)
= n(OA+2/3(OB-OA))
= n(1/3OA+2/3OB)
=n/3a+2n/3b.
综上可知:向量OP=(3/4-3m/4)a+mb=n/3a+2n/3b.
所以3/4-3m/4=n/3,m=2n/3,
解得m=3/5,n=9/10.
∴向量OP= n/3a+2n/3b=3/10a+3/5b.
= ON +mNB(因为向量NP与向量NB共线,所以存在唯一实数m,使得NP =mNB)
=3a/4+m(OB-ON)
=3a/4+m(b-3a/4)
=(3/4-3m/4)a+mb.
另一方面,
因为向量OP与向量OM共线,所以存在唯一实数n,使得OP =nOM,
向量OP =nOM
=n(OA+AM)
= n(OA+2AB/3)
= n(OA+2/3(OB-OA))
= n(1/3OA+2/3OB)
=n/3a+2n/3b.
综上可知:向量OP=(3/4-3m/4)a+mb=n/3a+2n/3b.
所以3/4-3m/4=n/3,m=2n/3,
解得m=3/5,n=9/10.
∴向量OP= n/3a+2n/3b=3/10a+3/5b.
平面向量基本定理在△AOB中,向量OA=a,向量OB=b,设向量AM=2向量MB,向量ON=3向量NA,而OM与BN相交
高中数学(向量问题)在△AOB中,向量OA=a,向量OB=b,设向量AM=2MB,向量ON=3NA ,而OM与BN相交于
平面向量问题三角形OAB,BN与OM交于点P,M在AB上,N在OA上.OA=a,OB=b设AM=2MB,ON=3NA而O
如图,在△ABO中,向量OC=1/4向量OA,向量OD=1/2向量OB,AD与BC相交于点M,设向量OA=向量a,向量O
在△OAB中,向量OC=1/4向量OA,向量OD=1/2向量OB.AD与BC交于点M,设向量OA=向量a,向量OB=向量
向量om=2/3向量oa+1/3向量ob,则向量am=?向量ab
设向量OA=a,向量OB=b,用a和b表示向量OM.
向量OA=a向量,向量OB=tb向量,向量OC=1/3(a向量+b向量)
已知三角形ABC中,O为平面内一点,且设向量OA=向量a,向量OB=向量b,向量OC=向量c
将向量OP=3向量OM—向量OA—向量OB写成向量MP=x向量MA+y向量MB,则x= ,y= .
O,A,B是平面上三点,向量OA=向量a,向量OB=向量b, .
设O,A,B,C为平面上四个点,向量OA=向量a,向量OB=向量b,向量OC=向量c,且向量a+向量b+向量c=零向量,