作业帮 > 数学 > 作业

已知点A(0,2)B(2,0) c在函数y=x^2上则使得三角形ABC的面积为2的c点个数为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 09:57:54
已知点A(0,2)B(2,0) c在函数y=x^2上则使得三角形ABC的面积为2的c点个数为
已知点A(0,2)B(2,0) c在函数y=x^2上则使得三角形ABC的面积为2的c点个数为
∵S△ABC=2 AB=√(2²+2²)=2√2
∴点C在平行于AB且到AB的距离为√2的直线上,由于点C在抛物线上,因此点C是直线与抛物线的交点,交点的个数就决定了C点的个数.
只需将直线AB沿y轴向上或向下平移2个单位就可得平行于AB且到AB的距离为√2的直线
∵直线AB解析式为:y=-x+2 (用A、B两点坐标很易求出)
∴平移后直线解析式为:y=x+4 或 y=-x
(1)直线为y=-x+4时,联立方程组得:
y=-x+4
y=x²
x²+x-4=0
△=1+16=17>0 (方程组有两组解,交点C有两个)
x=(-1+√17)/2或(-1-√17)/2
y=(9-√17)/2或(9+√17)/2
(2)直线为y=-x时,联立方程组得:
y=-x
y=x²
x²+x=0
△=1-0=1 (方程组有两组解,交点C有两个)
x=0或x=-1
y=0或y=1
满足条件的点C坐标为:
(0,0),(-1,1),((-1+√17)/2,(9-√17)/2),((-1-√17)/2,(9+√17)/2)