讨论函数的连续性讨论函数f(x)=lim (1-x^2n/1+x^2n)x的连续性,若有间断点,判别其类型.n→∞在所给
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:56:31
讨论函数的连续性
讨论函数f(x)=lim (1-x^2n/1+x^2n)x的连续性,若有间断点,判别其类型.
n→∞
在所给答案中f(x)=-x |x|>1
0 |x|=1
x |x|
讨论函数f(x)=lim (1-x^2n/1+x^2n)x的连续性,若有间断点,判别其类型.
n→∞
在所给答案中f(x)=-x |x|>1
0 |x|=1
x |x|
这个是数学大纲解析的习题呢~解这一类的题,其实有个套路,就是先通过求极限将f(x)的表达式求出来就可以解啦~步骤如下:
1、先求lim(1-x^2n/1+x^2n)x ,(n->∞):
f(x)= 0 ,当 x=0 或 x=±1
x ,当 0≤x<1 或 x<-1
-x ,当 -1<x≤0 或 x> 1 (共3种情况)
2、接着我们来找间断点:
通过上述的区间我们看出,“关键的点”有三个:0、1、-1;
(1)先看0:通过上面的区间可以看出,limf(0)=limf(x) (x->0+)=limf(x) (x->0-)
所以f(x)在(-1,1)都是连续的,0不是间断点;
(2)再看1:f(1)=0 ,limf(x)(x->1-)=x=1 ,limf(x)(x->1+)=-x=-1
f(1)≠limf(x)(x->1-)≠limf(x)(x->1+);所以x=1为第一类间断点;
(3)同理,-1:f(-1)=0 ,limf(x)(x->-1-)=x=-1 ,limf(x)(x->-1+)=-x=1
f(-1)≠limf(x)(x->-1-)≠limf(x)(x->-1+);所以x=-1为第一类间断点;
3、结论:x=1和x=-1是第一类间断点;f(x)的连续区间为(-∞,-1)、(-1,1)、(1,+∞)
1、先求lim(1-x^2n/1+x^2n)x ,(n->∞):
f(x)= 0 ,当 x=0 或 x=±1
x ,当 0≤x<1 或 x<-1
-x ,当 -1<x≤0 或 x> 1 (共3种情况)
2、接着我们来找间断点:
通过上述的区间我们看出,“关键的点”有三个:0、1、-1;
(1)先看0:通过上面的区间可以看出,limf(0)=limf(x) (x->0+)=limf(x) (x->0-)
所以f(x)在(-1,1)都是连续的,0不是间断点;
(2)再看1:f(1)=0 ,limf(x)(x->1-)=x=1 ,limf(x)(x->1+)=-x=-1
f(1)≠limf(x)(x->1-)≠limf(x)(x->1+);所以x=1为第一类间断点;
(3)同理,-1:f(-1)=0 ,limf(x)(x->-1-)=x=-1 ,limf(x)(x->-1+)=-x=1
f(-1)≠limf(x)(x->-1-)≠limf(x)(x->-1+);所以x=-1为第一类间断点;
3、结论:x=1和x=-1是第一类间断点;f(x)的连续区间为(-∞,-1)、(-1,1)、(1,+∞)
讨论函数的连续性讨论函数f(x)=lim (1-x^2n/1+x^2n)x的连续性,若有间断点,判别其类型.n→∞在所给
讨论函数f(x)=limn→∞x(1-x^2n)/(1+x^2n)的连续性,若有间断点,判别其类型.
讨论函数F(x)=lim(n→∞)(1-x^2n)÷(1+x^2n)x的连续性,若有间断点,判别其类型
讨论函数f(x)=lim(1-x^2n)/(1+x^2n)x的连续性,若有间断点,判断其类型
极限与连续性的证明题讨论函数f(x)=lim〔1-x^(2n)〕 /〔1+x^(2n) 〕的连续性,若有间断点,判别其类
讨论函数f(x)=n趋向于无穷极限(x+x^2*e^n/x)/(1十e^n/x)的连续性,若有间断点,判别其类型.
讨论函数f(x)=当n趋向于无穷时,(1-x的2n次方)/(1+x的2n次方)的极限的连续性,若有间断点,判别其类型
讨论函数f(x)=lim n→无穷,(1-X^2n)X/(1+X^2n)的连续性及其间断点
高数函数连续性问题讨论函数的连续性,若有间断点,判别其类型不是x ,而是n趋于无穷!!!!!
讨论函数F(x)=lim(n→∞)x*(1-x^2n)/(1+x^2n)的连续性,并判断其间断点的类型.
讨论函数F(x)=lim(n→∞)x*(1+x^2n)/(1-x^2n)的连续性,并判断其间断点的类型.
高数中函数连续性讨论下列函数的连续性 并作出f(x)图形1.f(x)=lim(n趋近无穷)1\(1+(cosx)^2n)