作业帮 > 数学 > 作业

高等数学-证明题- 中值定理 f(a)g(b)-f(b)g(a)=(b-a)(f(a)g'(ξ)-f'(ξ)g(a))

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 18:03:45
高等数学-证明题- 中值定理 f(a)g(b)-f(b)g(a)=(b-a)(f(a)g'(ξ)-f'(ξ)g(a))
f(x),g(x)在[a,b]上连续,在(a,b)内可导,证明存在ξ∈(a,b) 使得 f(a)g(b)-f(b)g(a)=(b-a)(f(a)g'(ξ)-f'(ξ)g(a)).
高等数学-证明题- 中值定理 f(a)g(b)-f(b)g(a)=(b-a)(f(a)g'(ξ)-f'(ξ)g(a))
令F(x)=f(a)g(x)-f(x)g(a)
则F(b)=f(a)g(b)-f(b)g(a)
F(a)=f(a)g(a)-f(a)g(a)=0
∵f(x),g(x)在[a,b]上连续,在(a,b)内可导
∴F(x)=f(a)g(x)-f(x)g(a)在[a,b]上连续,在(a,b)内可导
∴存在ξ∈(a,b) 使得[F(b)-F(a)]/(b-a)=F'(ξ)
整理后即得所证