作业帮 > 数学 > 作业

已知关于x的不等式(ax-a2-4)(x-4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为______

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 10:52:51
已知关于x的不等式(ax-a2-4)(x-4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为______.
已知关于x的不等式(ax-a2-4)(x-4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为______
已知关于x的不等式(ax-a2-4)(x-4)>0,
 ①a<0时,[x-(a+
4
a)](x-4)<0,其中a+
4
a<0,
故解集为(a+
4
a,4),
由于a+
4
a=-(-a-
4
a)≤-2
(−a)(−
4
a)=-4,
当且仅当-a=-
4
a,即a=-2时取等号,
∴a+
4
a的最大值为-4,当且仅当a+
4
a=-4时,A中共含有最少个整数,此时实数a的值为-2;
②a=0时,-4(x-4)>0,解集为(-∞,4),整数解有无穷多,故a=0不符合条件;
③a>0时,[x-(a+
4
a)](x-4)>0,其中a+
4
a≥4,
∴故解集为(-∞,4)∪(a+
4
a,+∞),整数解有无穷多,故a>0不符合条件;
综上所述,a=-2.
故答案为:-2.