AC‖BD,连结AB,可把平面分成4个部分,当动点P落在某个部分时,连结PA,PB,构成∠PAC,∠APB,∠PBD,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 07:32:49
AC‖BD,连结AB,可把平面分成4个部分,当动点P落在某个部分时,连结PA,PB,构成∠PAC,∠APB,∠PBD,
点P落在第③部分时,探究∠PAC,∠APB,∠PBD的关系,写出P的位置和结论,选择一种结论说明
点P落在第③部分时,探究∠PAC,∠APB,∠PBD的关系,写出P的位置和结论,选择一种结论说明
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
(3)当动点P在第③部分时,全面探究∠PAC、∠APB、∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
(1)解法一:延长BP交直线AC于点E
∵ AC‖BD , ∴ ∠PEA = ∠PBD .
∵ ∠APB = ∠PAE + ∠PEA ,
∴ ∠APB = ∠PAC + ∠PBD .
(2)不成立.
(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB .
(b)当动点P在射线BA上,结论是∠PBD =∠PAC +∠APB .
或∠PAC =∠PBD +∠APB 或 ∠APB = 0°,
∠PAC =∠PBD(任写一个即可).
(c) 当动点P在射线BA的左侧时,结论是∠PAC =∠APB +∠PBD .
http://www.pep.com.cn/czsx/jszx/zkzl/gdst/200801/t20080118_439204.htm
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
(3)当动点P在第③部分时,全面探究∠PAC、∠APB、∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
(1)解法一:延长BP交直线AC于点E
∵ AC‖BD , ∴ ∠PEA = ∠PBD .
∵ ∠APB = ∠PAE + ∠PEA ,
∴ ∠APB = ∠PAC + ∠PBD .
(2)不成立.
(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB .
(b)当动点P在射线BA上,结论是∠PBD =∠PAC +∠APB .
或∠PAC =∠PBD +∠APB 或 ∠APB = 0°,
∠PAC =∠PBD(任写一个即可).
(c) 当动点P在射线BA的左侧时,结论是∠PAC =∠APB +∠PBD .
http://www.pep.com.cn/czsx/jszx/zkzl/gdst/200801/t20080118_439204.htm
AC‖BD,连结AB,可把平面分成4个部分,当动点P落在某个部分时,连结PA,PB,构成∠PAC,∠APB,∠PBD,
如图,已知直线AC//BD,当动点P落在如下的某部分时,连接PA、PB,构成∠PAC、∠PBD、∠APB,构成三个角.
AC∥BD,连接AB,当点P在AB右边时,证明∠APB=∠PAC+∠PBD
如图11所示,直线AC平行BD,连结AB,直线AC.BD及线段AB把平面分成(1)(2)(3)(4)四个部分,规定:
如图,∠MON=90°,点P是弧MN上的一点,PA⊥OM,PB⊥ON,垂足分别为A,B,连结AB.当P点在弧MN上移动时
AC∥BD,探索∠PAC ∠APB ∠PBD 之间的数量关系
如图,AC平行BD求证:∠APB=∠PAC+∠PBD
28.如图,直线AC∥BD,连结AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何
四边形ABCD的对角线AC.BD交于E点,AD=AB BC=CD PA垂直平面ABCD,求证平面PBD垂直平面PAC
已知:PA=根号2,PB=4,以AB为一边作正方形ABCD,使P,D两点落在直线AB两侧,当∠APB=45°时,求AP及
如图,正三角形ABC的边长a,D为BC的中点,P是AC边上的动点,连结PB和PD得到三角形PBD,求:1.点P运动到AC
PA,PB是平面a的斜线,已知∠APB=90°,AB=10,点P到平面a的距离为3