四棱锥P—ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=a根号2
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 07:29:40
四棱锥P—ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=a根号2
(1)求证:PD⊥平面ABCD;(2)求证:直线PB与AC垂直(3)求二面角A—PB—D的大小(4)在这四棱锥中放一个球,求球的最大半径;(5)求四棱锥外接球的半径.
(1)求证:PD⊥平面ABCD;(2)求证:直线PB与AC垂直(3)求二面角A—PB—D的大小(4)在这四棱锥中放一个球,求球的最大半径;(5)求四棱锥外接球的半径.
1、底面ABCD是正方形,AB=BC=CD=AD=a,
PD=a,AD^2+PD^2=2a^2,AP^2=2a^2,
根据勾股逆定理,
△APD是RT△,
同理△PCD是RT△,
AD∩CD=D,
∴PD⊥平面ABCD.
2、连结底面对角线AC、BD,
则AC⊥BD,
由前所述,PD⊥平面ABCD,
根据三垂线定理,
∴PB⊥AC.
3、过PB中点F作FO⊥底面ABCD,垂足O,则O是对角线AC和BD交点,连结AF,
PB=√3a,则〈PAB=90度,〈PCB=90度,
S△PAB=√2a*a/2=√2a^2/2,
S△FAB==√2a^2/4,
S△FOB=S△PBD/4=√2a*a/2/4=√2a*a/8,
设二面角A-PB-D平面角为θ,
S△FOB=S△FAB*cosθ,
cosθ==(√2a*a/8)/(√2a^2/4)=1/2,
θ=60度.
二面角A—PB—D为度.
4、设内切球半径为r,内切球心为I,
则I至各平面距离为r,
连结I至多个顶点连线,把四棱锥分成5个小三棱锥,5个小三棱锥体积之和等于大四棱锥的体积.
r*(a^2/2+a^2/2+√2a*a/2+√2a*a/2+a^2)/3=a^2*a/3,
r=(2-√2)a.
最大球即是内切球,最大半径为(2-√2)a.
5、因△PAB、△PBC,△PDB都是以PB为斜边的RT△,
从PB中点F至A、B、C、D距离均是PB/2,
PB=√3a,
四棱锥外接球的半径R=PB/2=√3a/2.
PD=a,AD^2+PD^2=2a^2,AP^2=2a^2,
根据勾股逆定理,
△APD是RT△,
同理△PCD是RT△,
AD∩CD=D,
∴PD⊥平面ABCD.
2、连结底面对角线AC、BD,
则AC⊥BD,
由前所述,PD⊥平面ABCD,
根据三垂线定理,
∴PB⊥AC.
3、过PB中点F作FO⊥底面ABCD,垂足O,则O是对角线AC和BD交点,连结AF,
PB=√3a,则〈PAB=90度,〈PCB=90度,
S△PAB=√2a*a/2=√2a^2/2,
S△FAB==√2a^2/4,
S△FOB=S△PBD/4=√2a*a/2/4=√2a*a/8,
设二面角A-PB-D平面角为θ,
S△FOB=S△FAB*cosθ,
cosθ==(√2a*a/8)/(√2a^2/4)=1/2,
θ=60度.
二面角A—PB—D为度.
4、设内切球半径为r,内切球心为I,
则I至各平面距离为r,
连结I至多个顶点连线,把四棱锥分成5个小三棱锥,5个小三棱锥体积之和等于大四棱锥的体积.
r*(a^2/2+a^2/2+√2a*a/2+√2a*a/2+a^2)/3=a^2*a/3,
r=(2-√2)a.
最大球即是内切球,最大半径为(2-√2)a.
5、因△PAB、△PBC,△PDB都是以PB为斜边的RT△,
从PB中点F至A、B、C、D距离均是PB/2,
PB=√3a,
四棱锥外接球的半径R=PB/2=√3a/2.
四棱锥P—ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=a根号2
四棱锥P—ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=
如图,四棱锥P-ABCD中,底面ABCD为正方形,边长是a,PD=a,PA=PC= 根号2倍的a,
四棱锥p-abcd中,底面abcd是正方形,边长为a pd=a pa=pc=根号2a,且pd是四棱锥的高
四棱锥P-ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=√2a,
设四棱锥P-ABCD中底面ABCD是边长为a的正方形,且PD=a,PA=PC=根号2a,则此四棱锥的内切球的最大半径长为
在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=根号2/2AD
在四棱锥P-ABCD中,底面ABCD是正方形,AB=a,PD=a,PA=PC=根号2a
高中数学几何一道题!在四棱锥P-ABCD中底面ABCD是边长为a的正方形,PD⊥ABCD,PD=a,PA=PC=(2^-
在四棱锥P-ABCD中,底面ABCD是正方形,AB=a,PD=a,PA=PC=根号2a,求:PD⊥平面ABCD
在四棱锥P-ABCD中,底面ABCD是正方形,AB=PD=a,PA=PC=2a.
在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD与底面ABCD垂直,切PA=PD=根号2/2AD,