作业帮 > 数学 > 作业

如图、在梯形ABCD中,AD‖BC,G、H分别是两条对角线AC、BD的中点,说明GH平行BC.且GH=1/2(BC-AD

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 00:11:27
如图、在梯形ABCD中,AD‖BC,G、H分别是两条对角线AC、BD的中点,说明GH平行BC.且GH=1/2(BC-AD)
如图、在梯形ABCD中,AD‖BC,G、H分别是两条对角线AC、BD的中点,说明GH平行BC.且GH=1/2(BC-AD
取AB的中点E,连接EG,EH
因为 E是AB的中点,G,H分别是对角线BD,AC的中点
所以 EG是三角形ABD的中位线,EH是三角形ABC的中位线
所以 EG//AD,EG=1/2AD,EH//BC,EH=1/2BC
因为 AD//BC,EG//AD
所以 EG//BC
因为 EH//BC
所以 E,G,H三点在同一直线上
所以 GH//BC
所以 GH=EH-EG
因为 EH=1/2BC,EG=1/2AD
所以 GH=1/2(BC-AD)