过点p(2,1)作直线l,分别交x轴y轴的正半轴于A,B两点.当三角形AOB的面积最小时求直线l的方程
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:18:22
过点p(2,1)作直线l,分别交x轴y轴的正半轴于A,B两点.当三角形AOB的面积最小时求直线l的方程
我告诉你吧,我用二种方法解:
方法一:
要使三角形AOB的面积最小,则二直角边长就必须为定值,因为直线经过点P(2,1),过点P作平行于X,Y轴的直线,分别交X,Y轴于点E,F,而四边形OEPF为定值,要使三角形AOB的面积最小,则三角形FPB的面积必须最小,则只有二直角边为定值,即FP=2,FB=1,则三角形FPB的面积最小,就有三角形FPB的面积=三角形EPA的面积,
那么直线L的方程为Y=-1/2X+2,
方法二:因为直线过点P(2,1),是属于直线系方程,即有m条直线必经过此点.
则此条直线方程可设为:Y-1=m(x-2),即直线必过定点P(2,1).
当X=0时,Y=1-2m,(m
方法一:
要使三角形AOB的面积最小,则二直角边长就必须为定值,因为直线经过点P(2,1),过点P作平行于X,Y轴的直线,分别交X,Y轴于点E,F,而四边形OEPF为定值,要使三角形AOB的面积最小,则三角形FPB的面积必须最小,则只有二直角边为定值,即FP=2,FB=1,则三角形FPB的面积最小,就有三角形FPB的面积=三角形EPA的面积,
那么直线L的方程为Y=-1/2X+2,
方法二:因为直线过点P(2,1),是属于直线系方程,即有m条直线必经过此点.
则此条直线方程可设为:Y-1=m(x-2),即直线必过定点P(2,1).
当X=0时,Y=1-2m,(m
过点p(2,1)作直线l,分别交x轴y轴的正半轴于A,B两点.当三角形AOB的面积最小时求直线l的方程
过点P(2,1)作直线L,分别交X轴,Y轴的正半轴于A,B两点,当三角形AOB的面积最小时,求直线L的方程
过点P(2,1)作直线L,分别交X轴,Y正半轴于于A、B两点,当三角形AOB面积最小时,求直线L的方程?
过点P(2,1)作直线L,分别交x轴、y轴的正半轴于A、B两点,当三角形AOB的面积最小时,求直线L的方程
过P(2,1)做直线L,分别交X轴y轴正半轴于AB两点,当三角形AOB的面积最小时,求L的方程
过点P(2,1)作直线l分别交x,y轴于A,B,求使△AOB的面积最小时的直线方程.
过P(2,1)作直线l交x轴,y轴的正半轴于A.B两点,求,当三角形AOB面积最小时的方程,当/PA/*/PB/最小时,
过点P(2,1)作直线l,分别交x轴y轴于A,B两点,当三角形AOB的面积为4时,求直线l的方程
一条直线l过点p(1,4),分别交x轴、y轴的正半轴于A、B两点,O为原点,求△AOB的面积最小时直线l的方程.
过点(1,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A、B两点,O为坐标原点,当△AOB的面积最小时,直线l的方程
已知直线l过点M(2,1),且与x轴、y轴的正半轴分别交于A、B两点,(1)求使△AOB面积最小时直线l的方程;(2)求
直线的两点式方程直线L过点P(3,2)且与X轴,Y轴正半轴分别交于A,B两点,求三角形ABC面积最小时直线L的方程..