作业帮 > 数学 > 作业

过点p(2,1)作直线l,分别交x轴y轴的正半轴于A,B两点.当三角形AOB的面积最小时求直线l的方程

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:18:22
过点p(2,1)作直线l,分别交x轴y轴的正半轴于A,B两点.当三角形AOB的面积最小时求直线l的方程
过点p(2,1)作直线l,分别交x轴y轴的正半轴于A,B两点.当三角形AOB的面积最小时求直线l的方程
我告诉你吧,我用二种方法解:
方法一:
要使三角形AOB的面积最小,则二直角边长就必须为定值,因为直线经过点P(2,1),过点P作平行于X,Y轴的直线,分别交X,Y轴于点E,F,而四边形OEPF为定值,要使三角形AOB的面积最小,则三角形FPB的面积必须最小,则只有二直角边为定值,即FP=2,FB=1,则三角形FPB的面积最小,就有三角形FPB的面积=三角形EPA的面积,
那么直线L的方程为Y=-1/2X+2,
方法二:因为直线过点P(2,1),是属于直线系方程,即有m条直线必经过此点.
则此条直线方程可设为:Y-1=m(x-2),即直线必过定点P(2,1).
当X=0时,Y=1-2m,(m