正数列a0,a1,a2.an...满足√ana(n-2)—√a(n-1)a(n-2)=2a(n-1) (n≥2) ,且a
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 09:44:37
正数列a0,a1,a2.an...满足√ana(n-2)—√a(n-1)a(n-2)=2a(n-1) (n≥2) ,且a0=a1=1,求通项.
原式两边同时除以a(n-1)得
√[ana(n-2)/a(n-1)^2]—√[a(n-2)/a(n-1)]=2
令Bn=√[an/a(n-1)],则B1=√(a1/a0)=1
所以Bn/B(n-1)-1/B(n-1)=2
即Bn=2B(n-1)+1(n≥2)
所以Bn+1=2[B(n-1)+1],B1+1=2
所以{Bn+1}是首项为2,公比为2的等比数列
所以Bn+1=2^n
所以Bn=2^n-1=√[an/a(n-1)]
所以an=[an/a(n-1)]*[a(n-1)/a(n-2)]*...*(a2/a1)*(a1/a0)*ao
=(2-1)(2^2-1)(2^3-1)...(2^n-1),其中n≥1
当n=0时,a0=1
√[ana(n-2)/a(n-1)^2]—√[a(n-2)/a(n-1)]=2
令Bn=√[an/a(n-1)],则B1=√(a1/a0)=1
所以Bn/B(n-1)-1/B(n-1)=2
即Bn=2B(n-1)+1(n≥2)
所以Bn+1=2[B(n-1)+1],B1+1=2
所以{Bn+1}是首项为2,公比为2的等比数列
所以Bn+1=2^n
所以Bn=2^n-1=√[an/a(n-1)]
所以an=[an/a(n-1)]*[a(n-1)/a(n-2)]*...*(a2/a1)*(a1/a0)*ao
=(2-1)(2^2-1)(2^3-1)...(2^n-1),其中n≥1
当n=0时,a0=1
正数列a0,a1,a2.an...满足√ana(n-2)—√a(n-1)a(n-2)=2a(n-1) (n≥2) ,且a
设正整数列a0,a1,...,an,...满足√【an*a(n-2)】-√【a(n-1)*a(n-2)】=2a(n-1)
已知数列{an}满足a0=1,an=a0+a1+a2+...+a(n-1) (n≥2且n属于N*),则当n属于N*时an
已知数列{an}中,a0=a1=1,且根号ana(n-2)-根号a(n-1)a(n-2)=2a(n-1)求数列{an}的
已知正数数列an中,an^2-ana(n-1)^2-2a(n-1)^2=0(n≥2),a1=1
已知各项均为正数的数列{an}满足a1=3,且(2a(n+1)-an)/(2an-a(n+1))=ana(n+1),求数
已知数列{an}满足a1=1,a1+a2+a3+.+a(n-1)-an=-1(n≥2且n属于N+).
已知数列An中,A0=2,A1=3,A2=6,且对n≥3时,有An=(n+4)A(n-1)-4nA(n-2)+(4n-8
已知数列{an}的各项都是正数,且满足:a0=1,a(n+1)=an(4-an)/2,n∈N.
已知数列(An)中,A1=1/3,AnA(n-1)=A(n-1)-An(n>=2),数列Bn满足Bn=1/An
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
整数数列{An}满足 A1*A2+A2*A3+…+A(n-1)*An=(n-1)*n*(n+1)/3 ,(n=2,3,…