求椭圆内接四边形最值P.Q.M.N四点都在椭圆x^2+y^2/4上,F为椭圆在y轴正半轴焦点,已知PQ垂直于MN,求四边
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:57:32
求椭圆内接四边形最值
P.Q.M.N四点都在椭圆x^2+y^2/4上,F为椭圆在y轴正半轴焦点,已知PQ垂直于MN,求四边形PQMN面积最大值和最小值
P.Q.M.N四点都在椭圆x^2+y^2/4上,F为椭圆在y轴正半轴焦点,已知PQ垂直于MN,求四边形PQMN面积最大值和最小值
显然,四边形PQMN应是椭圆的内接矩形.设P(x,y)在第一象限(x≥0,y≥0),则矩形PQMN的面积S=4xy.由椭圆方程知x^2+y^2/4=1,即4x^2+y^2=4,可以写成(2x)^2+y^2=4.于是,S=4xy=2*(2x)*(y) ≤(2x)^2+y^2=4.即S有最大值4.仅当2x=y时取得最大值.将y=2x代入椭圆方程可得x=√2,y=2√2.这个最大面积是S=4*√2*2√2=16.最小值为0.
以上供你参考.
以上供你参考.
求椭圆内接四边形最值P.Q.M.N四点都在椭圆x^2+y^2/4上,F为椭圆在y轴正半轴焦点,已知PQ垂直于MN,求四边
P,Q,M,N四点都在椭圆x^2+y^/2=1上,F为椭圆在y轴正半轴上的焦点,已知向量PF与向量FQ共线,向量MF与向
P、Q、M、N四点都在椭圆X平方+Y平方/2=1上,F为椭圆在Y轴正半轴上的焦点.已知:PF向量与FQ向量共线.MF向量
椭圆中心为原点,焦点在坐标轴上,直线y=x+1与圆交于P,Q两点,OP垂直于OQ且PQ长为2分之根号10,求椭圆方程
已知椭圆中心在坐标原点O,焦点在坐标轴上,且交直线y=x+1于P,Q两点,若OP垂直OQ,PQ=根10/2,求椭圆方程
已知椭圆的中心在原点,焦点在坐标轴上,直线Y=X+1与该椭圆相交于P和Q,且OP⊥OQ,PQ=根号10/2,求椭圆的方程
椭圆中心在原点处,焦点在坐标轴上,Y=X+1与园交与P、Q且OP垂直于OQ.PQ=2分之根下10,求椭圆方程
已知点M在椭圆x^2/36+y^2/9=1上,MP1垂直于椭圆焦点所在的直线,垂足为P1,M为线段PP1中点,求P点轨迹
已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与该椭圆相交于点P和Q,且OP⊥OQ,|PQ|=√10/2,求
已知椭圆焦点在坐标轴上,直线y=x+1与该圆相交于P、Q,且OP⊥OQ,|PQ|=(√10)/2,求椭圆的标准方程
椭圆中心在坐标原点,焦点在坐标轴上,y=x+1与该椭圆相交于P,Q,且OP垂直OQ,PQ=根号10,分之2,椭圆方程
已知椭圆X^2/4+Y^2/3=1内有一点P(1,-1),F为椭圆的右焦点,M为椭圆上的一点求MP+MF的最大值和最小值