数列.已知等差数列{An}中,An≠0,若m>1且Am-1 - Am ^2 + Am+1=0,S2m-1 =38,则m=
数列.已知等差数列{An}中,An≠0,若m>1且Am-1 - Am ^2 + Am+1=0,S2m-1 =38,则m=
等差数列{an}的前n项和为Sn,已知am-1 +am+1 -(am)^2=0,S2m-1=38,求m
已知等差数列{an}中的前n项和为Sn,若m>1,且am-1+am+1-am²=0,S2m-1=38,则m等于
已知等差数列{an}的前n项和为Sn,若m>1,且am-1+am+1-am2=0,S2m-1=38,则m等于( )
已知等差数列{An}的前n项和为Sn,诺m>1,且Am-1+Am+1=(Am)^2,S2m-1=38,则m为多少
等差数列{an}的前n项和为Sn,已知am-1+am+1-am2=0,S2m-1=38,则m等于
已知等差数列an的前n项和为Sn,若m>1且am-1+am+1-am平方-1=0.S2m-1=39,则m等于
等差数列{An}前n项和是Sn.已知Am_1+Am+1-Am的平方等于零.S2m-1等于38.则m等于
等差数列an的前N项和为Sn,已知am-1+am+1-am的平方=0,s2m-1=38
已知数列{an}中,a1=1,且对于任意的正整数m,n都有am+n=aman+am+an,则数列{an}的通项公式为__
已知数列an中,a1=1,a2=0,对任意正整数n,m(n>m)满足(an)²-(am)²=(an-
{an}是等差数列.通项公式an=2n-7,求所有正整数m,使am*(am+1)/(am+2)为数列{an}中的项.