(2011•济南二模)已知函数f(x)=mx3+2nx2-12x的减区间是(-2,2).
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 08:43:10
(2011•济南二模)已知函数f(x)=mx3+2nx2-12x的减区间是(-2,2).
(1)试求m、n的值;
(2)求过点A(1,-11)且与曲线y=f(x)相切的切线方程;
(3)过点A(1,t)是否存在与曲线y=f(x)相切的3条切线,若存在求实数t的取值范围;若不存在,请说明理由.
(1)试求m、n的值;
(2)求过点A(1,-11)且与曲线y=f(x)相切的切线方程;
(3)过点A(1,t)是否存在与曲线y=f(x)相切的3条切线,若存在求实数t的取值范围;若不存在,请说明理由.
(1)由题意知:f'(x)=3mx2+4nx-12<0的解集为(-2,2),
所以,-2和2为方程3mx2+4nx-12=0的根,(2分)
由韦达定理知0=−
4n
3m,−4=
−12
3m,即m=1,n=0.(4分)
(2)∵f(x)=x3-12x,∴f'(x)=3x2-12,∵f(1)=13-12•1=-11
当A为切点时,切线的斜率k=f'(1)=3-12=-9,
∴切线为y+11=-9(x-1),即9x+y+2=0;(6分)
当A不为切点时,设切点为P(x0,f(x0)),这时切线的斜率是k=f'(x0)=3x02-12,
切线方程为y-f(x0)=f'(x0)(x-x0),即y=3(x02-4)x-2x03
因为过点A(1,-11),-11=3(x02-4)-2x03,∴2x03-3x02+1=0,(x0-1)2(2x0+1)=0,
∴x0=1或x0=−
1
2,而x0=1为A点,即另一个切点为P(−
1
2,
47
8),
∴k=f′(−
1
2)=3×
1
4−12=−
45
4,
切线方程为y+11=−
45
4(x−1),即45x+4y-1=0(8分)
所以,过点A(1,-11)的切线为9x+y+2=0或45x+4y-1=0.(9分)
(3)存在满足条件的三条切线.(10分)
设点P(x0,f(x0))是过点A的直线与曲线f(x)=x3-12x的切点,
则在P点处的切线的方程为y-f(x0)=f'(x0)(x-x0)即y=3(x02-4)x-2x03
因为其过点A(1,t),所以,t=3(x02-4)-2x03=-2x03+3x02-12,
由于有三条切线,所以方程应有3个实根,(11分)
设g(x)=2x3-3x2+t+12,只要使曲线有3个零点即可.
设g'(x)=6x2-6x=0,∴x=0或x=1分别为g(x)的极值点,
当x∈(-∞,0)和(1,+∞)时g'(x)>0,g(x)在(-∞,0)和(1,+∞)上单增,
当x∈(0,1)时g'(x)<0,g(x)在(0,1)上单减,
所以,x=0为极大值点,x=1为极小值点.
所以要使曲线与x轴有3个交点,当且仅当
g(0)>0
g(1)<0即
t+12>0
t+11<0,
解得-12<t<-11.(
所以,-2和2为方程3mx2+4nx-12=0的根,(2分)
由韦达定理知0=−
4n
3m,−4=
−12
3m,即m=1,n=0.(4分)
(2)∵f(x)=x3-12x,∴f'(x)=3x2-12,∵f(1)=13-12•1=-11
当A为切点时,切线的斜率k=f'(1)=3-12=-9,
∴切线为y+11=-9(x-1),即9x+y+2=0;(6分)
当A不为切点时,设切点为P(x0,f(x0)),这时切线的斜率是k=f'(x0)=3x02-12,
切线方程为y-f(x0)=f'(x0)(x-x0),即y=3(x02-4)x-2x03
因为过点A(1,-11),-11=3(x02-4)-2x03,∴2x03-3x02+1=0,(x0-1)2(2x0+1)=0,
∴x0=1或x0=−
1
2,而x0=1为A点,即另一个切点为P(−
1
2,
47
8),
∴k=f′(−
1
2)=3×
1
4−12=−
45
4,
切线方程为y+11=−
45
4(x−1),即45x+4y-1=0(8分)
所以,过点A(1,-11)的切线为9x+y+2=0或45x+4y-1=0.(9分)
(3)存在满足条件的三条切线.(10分)
设点P(x0,f(x0))是过点A的直线与曲线f(x)=x3-12x的切点,
则在P点处的切线的方程为y-f(x0)=f'(x0)(x-x0)即y=3(x02-4)x-2x03
因为其过点A(1,t),所以,t=3(x02-4)-2x03=-2x03+3x02-12,
由于有三条切线,所以方程应有3个实根,(11分)
设g(x)=2x3-3x2+t+12,只要使曲线有3个零点即可.
设g'(x)=6x2-6x=0,∴x=0或x=1分别为g(x)的极值点,
当x∈(-∞,0)和(1,+∞)时g'(x)>0,g(x)在(-∞,0)和(1,+∞)上单增,
当x∈(0,1)时g'(x)<0,g(x)在(0,1)上单减,
所以,x=0为极大值点,x=1为极小值点.
所以要使曲线与x轴有3个交点,当且仅当
g(0)>0
g(1)<0即
t+12>0
t+11<0,
解得-12<t<-11.(
(2011•济南二模)已知函数f(x)=mx3+2nx2-12x的减区间是(-2,2).
已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y=0平行,若f(x)在区间[t,t+1]
(2011•江苏模拟)已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y=0平行,若f(x
已知函数y=mx3+nx2的图像在点(-1,2)处的切线恰好与直线3x+y=0..
(2007•汕头二模)已知函数f(x)=mx3-3(m+1)x2+3(m+2)x+1,其中m∈R.
(2010•济南二模)已知函数f(x)=2x−ax2+2(x∈R).
(2014•济南二模)已知函数f(x)=cos(π4x-π3)+2cos2π8x.
(2013•济南二模)已知函数f(x)=13ax3+(a−2)x+c的图象如图所示.
已知函数f(x)=2x2+4x,求出函数f(x)的单调区间,并对减区间的情况给予证明.
已知函数f(x)是R上的减函数,求函数y=f(-x²+2x+3)的单调递减区间
已知函数f(x)=mx3+nx2(m,n∈R )的图像在(1,f(1))处的切线与直线3x+y=0平行.(1)求n,m的
已知函数f(x)=mx3+nx2(m,n∈R )的图像在(1,f(1))处的切线与直线3x+y=0平行. (1)求n,m