12个体积、形状相同的球,其中只有1个质量不同,如何用天平称量3次,把这个质量不同的球找出来?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 13:27:27
12个体积、形状相同的球,其中只有1个质量不同,如何用天平称量3次,把这个质量不同的球找出来?
只准称3次哦
原题是只知道有1个质量不同,轻重就不好说了
只准称3次哦
原题是只知道有1个质量不同,轻重就不好说了
先把小球从1到12任意编号
首先天平两边分别放1、2、3、4和5、6、7、8,有如下两种情况
(1)天平平衡,则次品在剩余的四个球里,称过的八个球为标准球,天平两边分别放1、2、3和9、10、11有如下三种情况
天平平衡,则12为次品
9、10、11轻,则这三个球里有一个球轻,天平两边分别放9和10,如果不平,轻的为次品,如果平衡,则11轻,11为次品
9、10、11重,则这三个球里有一个球重,天平两边分别放9和10,如果不平,重的为次品,如果平衡,则11重,11为次品
(2)天平不平衡,假设1、2、3、4重(1、2、3、4轻的方法与其重的方法完全一样),则天平两边分别放1、2、3、5、6和4、9、10、11、12有如下三种情况
天平平衡,则天平两边分别放7和9,平衡则8为次品,不平则7为次品
1、2、3、5、6重,则1、2、3里有一个球重,天平两边分别放1和2,平衡则3重,3为次品,不平则重的为次品
1、2、3、5、6轻,则5、6轻或者4重,天平两边分别放4、5和9、10,如果4、5重,则4重,4为次品,如果4、5轻,则5轻,5为次品,如果平衡,则6轻,6为次品
(完)
用天平N次称量唯一质量不同小球的问题,称量N次可以得出答案的极限小球个数是(3^n-1)/2 ,也就是说称量三次最多其实可以称量出13个小球,四次可以称量出40个小球,而既要找出不同小球,又要知道它是轻还是重,则N次最多可以称量(3^n-3)/2 个,也就是说三次可以称量12个,四次可以称量39个
首先天平两边分别放1、2、3、4和5、6、7、8,有如下两种情况
(1)天平平衡,则次品在剩余的四个球里,称过的八个球为标准球,天平两边分别放1、2、3和9、10、11有如下三种情况
天平平衡,则12为次品
9、10、11轻,则这三个球里有一个球轻,天平两边分别放9和10,如果不平,轻的为次品,如果平衡,则11轻,11为次品
9、10、11重,则这三个球里有一个球重,天平两边分别放9和10,如果不平,重的为次品,如果平衡,则11重,11为次品
(2)天平不平衡,假设1、2、3、4重(1、2、3、4轻的方法与其重的方法完全一样),则天平两边分别放1、2、3、5、6和4、9、10、11、12有如下三种情况
天平平衡,则天平两边分别放7和9,平衡则8为次品,不平则7为次品
1、2、3、5、6重,则1、2、3里有一个球重,天平两边分别放1和2,平衡则3重,3为次品,不平则重的为次品
1、2、3、5、6轻,则5、6轻或者4重,天平两边分别放4、5和9、10,如果4、5重,则4重,4为次品,如果4、5轻,则5轻,5为次品,如果平衡,则6轻,6为次品
(完)
用天平N次称量唯一质量不同小球的问题,称量N次可以得出答案的极限小球个数是(3^n-1)/2 ,也就是说称量三次最多其实可以称量出13个小球,四次可以称量出40个小球,而既要找出不同小球,又要知道它是轻还是重,则N次最多可以称量(3^n-3)/2 个,也就是说三次可以称量12个,四次可以称量39个
12个体积、形状相同的球,其中只有1个质量不同,如何用天平称量3次,把这个质量不同的球找出来?
天平找球,困难有12个小球,外观形状完全相同,其中有1个球的质量与其他11个不同,要求用一个天平称量3次,找出这个不同的
有12个大小形状相同的乒乓球,其中有一个次品的质量与其它11个球的质量不同,但不知偏轻还是偏重.要求用一架天平称量3次,
12个小球,外形.体积相同.其中,一个质量与其它的不同,不知是比其它的轻还是重,用天平3次找出那个球
共15个球,其中有一个是坏的,重量与其余14个不同,请问如何用天平称量2次便找出坏球
高手帮忙解答智力题有12个小球,外形相同,其中一个小球的质量与其他11个不同 ,给一个天平,试写出用3次把这个小球找出来
有12个小球,其中只有一个球质量和其它的不同.现只有一台托盘天平,怎样只称三次就把质量不同的球找出来
12个外形相同的球,其中之一质量异常,如何用天平称三次找出这个质量异常的球?
共13个球,其中有一个是坏的,重量与其余12个不同,请问如何用天平称量四次便找出坏球.
有12个球,其中有1个球的质量与其它的11不同,现只用天平称3次,找出那个问题球
关于乒乓求得数学题12个乒乓球,其中一个质量与别不同(或轻或重,未知),如何用天平称3次把它找出来?
有12个小球,其中一个或轻或重,其他的质量相同,请用天平称3次.找出那个质量不同的小球.