作业帮 > 数学 > 作业

一圆经过点P(2,-1)和直线x-y-1=0相切,且圆心在直线2x+y=0上,求该圆的方程

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 19:18:52
一圆经过点P(2,-1)和直线x-y-1=0相切,且圆心在直线2x+y=0上,求该圆的方程
一圆经过点P(2,-1)和直线x-y-1=0相切,且圆心在直线2x+y=0上,求该圆的方程
可设圆心C(t,-2t).由题设得√[(t-2)²+(2t-1)²]=|3t-1|/√2=R.解得t=1,或t=9.当t=1时,圆心(1,-2),半径R=√2.圆的方程为(x-1)²+(y+2)²=2.当t=9时,圆心(9,-18),半径R=13√2.圆的方程为(x-9)²+(y+18)²=338.