过抛物线Y2=2PX(p>0)的焦点,斜率为2根号2的直线交抛物线于AB两点且AB的绝对值为9,求AB的坐标
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 23:53:35
过抛物线Y2=2PX(p>0)的焦点,斜率为2根号2的直线交抛物线于AB两点且AB的绝对值为9,求AB的坐标
过抛物线Y²=2PX(p>0)的焦点斜率为2√2的直线交抛物线于A、B两点且︱AB︱=9,求A、B的坐标
y²=2px的焦点F(p/2,0),设过焦点的直线方程为y=(2√2)(x-p/2),代入抛物线方程得:
8(x-p/2)²=2px,展开化简得4x²-5px+p²=(4x-p)(x-p)=0,故得x₁=p/4,x₂=p;相应地
y₁=-(√2)p/2,y₂=(√2)p;
设A的坐标为(p/4,-(√2)p/2);B的坐标为(p,(√2)p);
于是︱AB︱=√[(P-P/4)²+((√2)p+(√2)p/2)²]=√(9p²/16+18p²/4)=√(81p²/16)=9p/4=9
故p=4,于是得抛物线方程为y²=8x;A点的坐标为(1,-2√2),B点的坐标为(4,4√2).
y²=2px的焦点F(p/2,0),设过焦点的直线方程为y=(2√2)(x-p/2),代入抛物线方程得:
8(x-p/2)²=2px,展开化简得4x²-5px+p²=(4x-p)(x-p)=0,故得x₁=p/4,x₂=p;相应地
y₁=-(√2)p/2,y₂=(√2)p;
设A的坐标为(p/4,-(√2)p/2);B的坐标为(p,(√2)p);
于是︱AB︱=√[(P-P/4)²+((√2)p+(√2)p/2)²]=√(9p²/16+18p²/4)=√(81p²/16)=9p/4=9
故p=4,于是得抛物线方程为y²=8x;A点的坐标为(1,-2√2),B点的坐标为(4,4√2).
过抛物线Y2=2PX(p>0)的焦点,斜率为2根号2的直线交抛物线于AB两点且AB的绝对值为9,求AB的坐标
过抛物线y2 =2px (p>0)焦点,且斜率为1的直线交抛物线于A,B两点,若AB=8,求抛物线方程
已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线
1.已知抛物线y^2=2PX(P>0).直线的斜率为-1,且过抛物线的焦点F,交抛物线于A,B两点,线段AB的长为3,求
(2014•湖北模拟)已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A,B两点,若线段AB的中点
已知抛物线y^2=2px(p>0),直线l的斜率为-1,且过抛物线的焦点F,交抛物线于AB两点,线段AB的长为3
已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线与A、B两点,若线段AB的中点的纵坐标为2,则该抛物线
过抛物线y^2=2px(p>0)的焦点F,且斜率为1的直线l交抛物线于A,B两点,若|AB | =8,求抛物线的标准方程
抛物线Y2=2px,过其焦点作倾斜角为60度的直线交抛物线于AB,且|AB|长为4,求抛物线方程!
过抛物线y2=2px(p>0)焦点的直线交抛物线于A、B两点,则|AB|的最小值为多少
已知过抛物线Y平方=2PX(X>0)的焦点的直线交抛物线于AB两点,且AB=5/2P,求AB方程
.已知抛物线y^2=2PX(P>0).直线的斜率为-1,且过抛物线的焦点F,交抛物线于A,B两点,线段AB的长为3,