作业帮 > 数学 > 作业

如图6,在等腰三角形ABC中,CH是底也上的高,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 00:59:24
如图6,在等腰三角形ABC中,CH是底也上的高,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接BP并延长交AC于点F.求证:(1)LCAE=LCBF;(2)AE=BF
如图6,在等腰三角形ABC中,CH是底也上的高,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接
在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.
(1)证明:∠CAE=∠CBF;
(2)证明:AE=BF;
(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠C的取值范围.
证明:(1)∵△ABC是等腰△,CH是底边上的高线,
∴AC=BC,∠ACP=∠BCP.
又∵CP=CP,
∴△ACP≌△BCP.
∴∠CAP=∠CBP,即∠CAE=∠CBF.
(2)∵∠ACE=∠BCF,∠CAE=∠CBF,AC=BC,
∴△ACE≌△BCF.
∴AE=BF.
(3)由(2)知△ABG是以AB为底边的等腰三角形,
∴S△ABC=S△ABG.
∴AE=AC.
①当∠C为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;
②当∠C为锐角时,∠A=90°- 1/2∠C,而∠CAE<∠A,要使AE=AC,只需使∠C=∠CEA,
此时,∠CAE=180°-2∠C,
只须180°-2∠C<90°- 1/2∠C,解得60°<∠C<90°.
如图6,在等腰三角形ABC中,CH是底也上的高,点P是线段CH上不与端点重合的任意一点,连接AP并延长交BC于点E,连接 如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC 在等腰三角形中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F, 如图,在等腰△ABC中,CH是底边上的高,P是线段CH上不与端点重合的任意一点,连接AB交BC与点E,连接BP交AC 在等腰三角行ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点 如图,在等腰△ABC中,CH是底边上的高,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E, 如图 在等腰△ABC中 CH是底边上的高线 点P是线段CH上不与端点重合的任意一点 连结AP交BC于点E 只求第二问如图,在△ABC中,AC=BC,CH⊥AB于H,点P是线段CH上不与端点重合的任意一点,连接AP,BP分别与B 如图,在等腰三角形ABC中,CH是底边的高,点P是线段CH上不与端点重合的任意一点. 在等腰三角形ABC中,AC=BC,COD是底边上的高线,点P是线段CD上不与端点重合的任意一点,连结AP并延长交BC与点 在三角形ABC中,AB=AC,D是AB的中点,P是线段CD上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC 在等腰三角形ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的的任意一点