如图在梯形ABCD中AD//BC,分别以两腰AB,CD为边作正方形ABEG和正方形DCHF,连接EF,设线段EF的中点为
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:53:26
如图在梯形ABCD中AD//BC,分别以两腰AB,CD为边作正方形ABEG和正方形DCHF,连接EF,设线段EF的中点为M,求证:MA=MD.(详细解答或清晰思路)
证明:过点A作AQ⊥BC于Q,过点D作DT⊥BC于T,过点E作EP⊥AD交DA的延长线于点P,过点F作FS⊥AD的延长线于S,过点M作MN⊥AD于N
∵AQ⊥BC,DH⊥BC,AD∥BC
∴矩形AQHD
∴AQ=AH,∠AQB=∠AHC=90,∠PAQ=90
∴∠BAQ+∠BAP=90
∵正方形ABGE
∴AE=AB,∠BAE=90
∴∠EAP+∠BAP=90
∴∠EAP=∠BAQ
∵EP⊥AD
∴∠APE=∠AQB
∴△ABQ≌△AEP (AAS)
∴AP=AQ
同理可证DS=DT
∴AP=DS
∵EP⊥AD,FS⊥AD,MN⊥AD
∴EP∥MN∥FS
∵M是EF的中点
∴MN是梯形EFSP的中位线
∴PN=SN
∵PN=AP+AN,SN=DS+DN
∴AP+AN=DS+DN
∴AN=DN
∴MN垂直平分AD
∴MA=MD
这是我之前的解答,有图:
再问: 用向量如何解
再答: 哦,我只会初中的方法
∵AQ⊥BC,DH⊥BC,AD∥BC
∴矩形AQHD
∴AQ=AH,∠AQB=∠AHC=90,∠PAQ=90
∴∠BAQ+∠BAP=90
∵正方形ABGE
∴AE=AB,∠BAE=90
∴∠EAP+∠BAP=90
∴∠EAP=∠BAQ
∵EP⊥AD
∴∠APE=∠AQB
∴△ABQ≌△AEP (AAS)
∴AP=AQ
同理可证DS=DT
∴AP=DS
∵EP⊥AD,FS⊥AD,MN⊥AD
∴EP∥MN∥FS
∵M是EF的中点
∴MN是梯形EFSP的中位线
∴PN=SN
∵PN=AP+AN,SN=DS+DN
∴AP+AN=DS+DN
∴AN=DN
∴MN垂直平分AD
∴MA=MD
这是我之前的解答,有图:
再问: 用向量如何解
再答: 哦,我只会初中的方法
如图在梯形ABCD中AD//BC,分别以两腰AB,CD为边作正方形ABEG和正方形DCHF,连接EF,设线段EF的中点为
梯形ABCD中,AD//BC,分别以两腰AB、CD为边向两边做正方形ABGE和正方形DCHF,连结EF,设线段EF的中点
如图,梯形ABCD中,AD平行于CD,以两腰AB,CD为一边分别向两边作正方形ABGE和DCHF,连接AD的垂直平分线
已知如图,梯形ABCD中,AD∥BC,以两腰AB,CD为一边分别向两边作正方形ABGE和DCHF,设线段AD的垂直平分线
全国联赛如图所示,梯形ABCD中,AD平行BC,分别以两腰AB.CD为边向两边作正方形ABGE和正方形DCHF,
如图,梯形ABCD中,EF分别为两腰AB和CD的中点,AD平行BC求证EF=二分之一(AD+BC)
如图,在正方形梯形ABCD中,AD平行BC,E为CD的中点,EF平行AB交BC于点F.求证BF=AD+CF
如图,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点.像EF这样,我们把连接梯形两腰中点的线段叫做梯形的中
一、如图,在梯形ABCD中,AD//BC,点E、F分别是AB、CD的中点,像EF这样,我们把连接梯形两腰中点的线段叫做梯
如图,在梯形ABCD中,AD//CD,E为AB的中点,且EF//BC,线段DF和线段FC有什么关系,为什么?
如图,在梯形ABCD中,AD//BC,E为AB的中点,且EF//BC,线段DF和线段FC有什么关系?为什么?
如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点,以O为圆心,以OE为半径画弧EF.P是EF上的