f(x)在(0,无穷)内可导,且f'(x)>0,f(0)=0,则在区间(0,无穷)内f(x)的符号为什么未定?
f(x)在(0,无穷)内可导,且f'(x)>0,f(0)=0,则在区间(0,无穷)内f(x)的符号为什么未定?
定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,正无穷)上递增函数
证明 :f(x)在(正无穷,负无穷)有定义,且f'(x)=f(x) ,f(0)=1 ,则f(x)=e^x
奇函数f(x)在区间(0,+无穷)上是增函数,又f(-3)=0则不等式f(x)/x
已知奇函数f(x)的定义域为(负无穷,0)并(0,正无穷),且f(x)在区间(0,正无穷)上是增函数,求证:函数f(x)
已知偶函数f(x)在区间[0,正无穷),则满足f(2x-1)
若函数f(x)在负无穷到正无穷内满足f(x)的导数=f(x),且f(0)=1,则f(x)=e的x次方
设奇函数f(x)是在(0,正无穷)上为增函数且f(x)=0,则不等式f(x)-f(x)/x
当x趋于正无穷时,lim f(x)=1.那么,连续函数f(x)在(0,正无穷)区间是有界的么?怎么证明
偶函数f(x)在(0,正无穷)上为减函数,且f(2)=0,则不等式[f(x)+f(-x) ] /x>0解集为
设f(x)在(0,正无穷)上是增函数,且f(1)=0.,则不等式x分之f(x)-f(-x)
定义在非零实数集上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,正无穷)上的增函数.