已知点A、B分别是椭圆X^2/36十y^2/20=1长轴的左右端点;点F是椭圆的右焦点,点P在椭圆上,且位于X轴上方PA
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 02:59:46
已知点A、B分别是椭圆X^2/36十y^2/20=1长轴的左右端点;点F是椭圆的右焦点,点P在椭圆上,且位于X轴上方PA⊥pF求P的坐标
椭圆这一类型的怎么解 理解记忆
椭圆这一类型的怎么解 理解记忆
设:P(X,Y) a=6,c=√(36-20)=4,A(-6,0),F(4,0)
向量AP=(X+6,Y),向量FP=(X-4,Y)
∵PA垂直PF,∴(X+6)(X-4)+Y²=0===>Y²=24-2X-X²代入椭圆方程:
5X²+24*9-18X-9X²=180====>2X²+9X-18=0====>X1=3/2,X2=-6(不合题意)
代入Y²=24-2X-X²=24-2(3/2)-(3/2)²=75/4====>Y=±5√3/2
P在X轴的上方,即Y>0
∴P(3/2,5√3/2)
向量AP=(X+6,Y),向量FP=(X-4,Y)
∵PA垂直PF,∴(X+6)(X-4)+Y²=0===>Y²=24-2X-X²代入椭圆方程:
5X²+24*9-18X-9X²=180====>2X²+9X-18=0====>X1=3/2,X2=-6(不合题意)
代入Y²=24-2X-X²=24-2(3/2)-(3/2)²=75/4====>Y=±5√3/2
P在X轴的上方,即Y>0
∴P(3/2,5√3/2)
已知点A、B分别是椭圆X^2/36十y^2/20=1长轴的左右端点;点F是椭圆的右焦点,点P在椭圆上,且位于X轴上方PA
点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方PA垂直于
已知点A ,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且在x轴上方,P
点A,B分别是椭圆X^2/36+Y^2/20=1长轴的左,右端点 ,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,P
问一道高二圆锥曲线题A B为椭圆x2/36+y2/20=1长轴的左右端点,F为右焦点,P在椭圆上,位于x轴上方,PA⊥P
已知椭圆X方/A方+Y方/B方=1的左右顶点上分别是A、B,右焦点是F,过F点作直线与长轴垂直,与椭圆交于P、Q两
已知点A(1,2)在椭圆3x^2+4y^2=48内,F(2,0)是椭圆的右焦点,在椭圆上求一点P,使得|PA|+2|PF
设A,F分别是椭圆x*2/a*2+y*2/b*2=1(a>b>0)的左顶点与右焦点,若在其右准线上存在点P,使得线段PA
已知椭圆x^2/9+y^2/5=1,F1,F2分别是椭圆的左右焦点,点A(1,1),点P为椭圆上一点,求|PA|+|PF
已知椭圆X^2/25+Y^2/16=1,右焦点F,Q,P分别是椭圆上一点和椭圆外一点,且Q为FP中点,则P点的轨迹方程为
已知f1f2是椭圆x^2/a^2+y^2/b^2(a>b>0)的左右焦点,A是椭圆位于第一象限的一点,点B也在椭圆上,且
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F,其右准线与x轴的焦点为A,再椭圆上存在点P满足