已知平面向量a=(根号3,-1),b=(1\2,根号3\2),若存在不同时为0的实数KT,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:47:30
已知平面向量a=(根号3,-1),b=(1\2,根号3\2),若存在不同时为0的实数KT,
使得向量X=A+(T^2-3)B,向量Y=-KA+TB,且向量X⊥向量Y,求函数关系式K=F(T)及其单调区间?
使得向量X=A+(T^2-3)B,向量Y=-KA+TB,且向量X⊥向量Y,求函数关系式K=F(T)及其单调区间?
x=a+(t^2-3)b
=(√3,-1)+((t^2-3)/2,√3(t^2-3)/2)
=((t^2-3+2√3)/2,(√3t^2-3√3-2)/2)
y=-ka+tb
=(-√3k,k)+(t/2,√3t/2)
=((t-2√3k)/2,(2k+√3t)/2 )
因为x⊥y
所以 x·y=0
即(t^2-3+2√3)/2 * (t-2√3k)/2 + (√3t^2-3√3-2)/2 * (2k+√3t)/2 =0
整理得 4k=t^3-3t
k=(t^3-3t)/4
所以 k=f(t)=(t^3-3t)/4
利用导数求f(t)的单调区间
f ' (t) =3(t^2-3)/4
令 f ' (t ) >0 得 t1
令 f ' (t)
=(√3,-1)+((t^2-3)/2,√3(t^2-3)/2)
=((t^2-3+2√3)/2,(√3t^2-3√3-2)/2)
y=-ka+tb
=(-√3k,k)+(t/2,√3t/2)
=((t-2√3k)/2,(2k+√3t)/2 )
因为x⊥y
所以 x·y=0
即(t^2-3+2√3)/2 * (t-2√3k)/2 + (√3t^2-3√3-2)/2 * (2k+√3t)/2 =0
整理得 4k=t^3-3t
k=(t^3-3t)/4
所以 k=f(t)=(t^3-3t)/4
利用导数求f(t)的单调区间
f ' (t) =3(t^2-3)/4
令 f ' (t ) >0 得 t1
令 f ' (t)
已知平面向量a=(根号3,-1),b=(1\2,根号3\2),若存在不同时为0的实数KT,
平面向量a=(根号3,-1),b=(1/2,(根号3)/2)若存在不同时为0的实数k和t
平面向量 向量a=(根号下3,-1),向量b=(1/2,根号下3/2,若存在不同时为0的实数k和t
已知平面向量a=(根号3,-1),b=(1/2,根号3/2)若存在不同时为零的实数k和t,使x=a+(t^2-3)b,y
已知平面向量a=(根号3,-1),b=(1/2,根号3/2).若存在不同时为零的实数k和t,使x=a+(t^2-3)b,
已知a=(根号3,-1),b=(1/2,根号3/2),若存在不同时为零的实数k和t,使x
﹢已知向量a=(二分之根号三,-1/2),向量b=(1/2,二分之根号三)若存在不同时为零的实数k,t 使x向量=
向量我用大写字母,已知向量A=(√3/2,-1/2),B=(1/2,√3/2).(√是根号)若存在不同时为零的实数k,t
已知平面向量a=(-2,m),b=(1,根号3),且(a-b)平行于b,则实数m的值为
已知平面向量a,b,|a|=1,|b|=根号3,且|2a+b|=根号7,则向量a与向量a+b的夹角
一题设平面向量a=(根号3,-1),向量b=(1/2,根号3/2),若存在实数m和角a(a在负π/2到π/2之间),使向
已知平面向量A=(根号3,-1),向量B=(1/2,根号3/2) 证明a垂直b