设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 12:13:29
设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的
设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的轨迹为E
点p为当m=1/4时轨迹E上的任意一点,定点Q的坐标(3,0),点N满足向量PN=2*向量NQ,试求点N的轨迹方程.
设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的轨迹为E
点p为当m=1/4时轨迹E上的任意一点,定点Q的坐标(3,0),点N满足向量PN=2*向量NQ,试求点N的轨迹方程.
a⊥b,则ab=0,所以 mx²+(y+1)(y-1)=0,即 mx²+y²=1,m=1/4时,
E:x²/4+y²=1
设 P(x1,y1),N(x,y),则向量PN=(x-x1,y-y1),NQ=(3-x,-y)
由于PN=2NQ,所以 x-x1=2(3-x),y-y1=-2y,
解得 x1=3x-6,y1=3y,代入E的方程,得
(3x-6)²/4+9y²=1
E:x²/4+y²=1
设 P(x1,y1),N(x,y),则向量PN=(x-x1,y-y1),NQ=(3-x,-y)
由于PN=2NQ,所以 x-x1=2(3-x),y-y1=-2y,
解得 x1=3x-6,y1=3y,代入E的方程,得
(3x-6)²/4+9y²=1
设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的
设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y-1),a⊥b,动点M(x,y)的轨迹为E
设m>0,在平面直角坐标系中,已知向量a(mx,y+1),向量b(x,y-1).a⊥b,动点M(x,y)的轨迹为E.
设m∈R,在平面直角坐标系中,已知向量a(mx,y+1)b(x,y-1).a⊥b,m等于
在平面直角坐标系中,已知向量a=((1/4)x,y+1),向量b=(x,y-1),a垂直b,动点M(x,y)的轨迹为E.
在平面直角坐标系中,已知向量a(1/4x,y+1),向量b(x,y-1) a垂直b,动点M(x,y)的轨迹为E
平面直角坐标系中,O为坐标原点,已知两定点A(1,0),B(0,-1),动点P(x,y)满足向量OP=m向量OA+(m-
在平面直角坐标系中,若向量a=(x,y+2),向量b=(x,y-2),且向量a的模+向量b的模=8.求动点M(x,y)的
平面向量测试题如图所示,在平面直角坐标系中,一条定长为m的线段,其端点A,B分别在x,y轴上滑动,设M满足AM(向量)=
在平面直角坐标系中,已知A(0,-1)B点在直线Y=-3上,M点满足MB向量平行OB向量,MA向量乘以AB向量=MB向量
如图,已知在平面直角坐标系中,直线l:y=-1/2x+2分别交两坐标轴于A、B两点,M是线段AB上一个动点,设M的横坐标
在平面直角坐标系中,已知向量a=(x,y-根号2),向量b=(kx,y+根号2)(k属于R),向量a垂直向量b,