作业帮 > 数学 > 作业

如何利用闭区间套定理来证明单调有界定理

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:40:52
如何利用闭区间套定理来证明单调有界定理
如何利用闭区间套定理来证明单调有界定理
设S是有上界集合,不妨设b是的一个上界,取a∈S构造区间[a,b],
定义性质P: 闭区间E,满足存在x1∈E,x1∈S且存在x2∈E,x2不属于S.
用二等分法构造区间套:
(1) 将[a,b]等分为两个子区间,则至少有一个具有性质P,不妨记该区间为[a1,b1],
则[a1,b1]含于[a,b] ;
(2) 将[a1,b1]等分为两个子区间,则至少有一个具有性质P,不妨记该区间为[a2,b2],
则[a2,b2]含于[a1,b1] ;
……
(n) 将[a(n-1),b(n-1)]等分为两个子区间,则至少有一个具有性质P,不妨记该区间为[an,bn],
则[an,bn]含于[a(n-1),b(n-1)]
……
由此方法,构造出闭区间套{[an,bn]}
其中每个bn为S的上界.
由Cantor区间套定理知存在唯一的ξ∈[an,bn]且ξ为{bn}的一个下界,为{an}的一个上界,使得
任意ε>0,存在N>0,当n>N时,有[an,bn]含于U(ξ;ε).
故任意ε>0,存在am∈S(m>N)使得ξ-ε