作业帮 > 数学 > 作业

1+【(1+2)分之一】+【(1+2+3)分之一】+.+【(1+2+3.2012)分之一】求解 简算 今天就要

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 09:44:40
1+【(1+2)分之一】+【(1+2+3)分之一】+.+【(1+2+3.2012)分之一】求解 简算 今天就要
1+【(1+2)分之一】+【(1+2+3)分之一】+.+【(1+2+3.2012)分之一】求解 简算 今天就要
因为1+2+3+..+n=n(n+1)/2,
所以原式=2×[1/(2×3)+1/(3×4)+1/(4×5)+...+1/(2012×2013)]
=2×(1/2-1/3+1/3-1/4+1/4-1/5+...+1/2012-1/2013)
=2×(1/2-1/2013)
=2×2012/4026
=2012/2013.
其中第二步还用到一个公式1/(n*(n+1))=1/n-1/(n+1).
再问: 求解释 看不懂
再答: 1+2+3+..+n=n(n+1)/2是等差数列的前n项和公式;(初中可能没学过,但这个公式我想应该是讲过的。如果你是个初中生的话,此题难度还是比较大的) 由此可以得到 1/(1+2)=2×[1/(2×3)] 1/(1+2+3)=2×[1/(3×4)] ... 1/(1+2+3+..+2012)=2×[1/(2012×2013)] 故1+1/(1+2)+1/(1+2+3)+...1/(1+2+3+..+2012) =1+2×[1/(2×3)+1/(3×4)+1/(4×5)+...+1/(2012×2013)] (这一步也很关键,要利用1/(n(n+1))=1/n-1/(n+1),从而有1/(2×3)=1/2-1/3,1/(3×4)=1/3-1/4......1/(2012×2013)=1/2012-1/2013) 上式 =1+2×(1/2-1/3+1/3-1/4+1/4-1/5+...+1/2012-1/2013) =1+2×(1/2-1/2013) =1+2×2012/4026 =1+2012/2013 刚才算得快了一些,忘记了还有一个1,不好意思了! 如还有疑问可以继续追问,也可以自己去看高中课本必修5数列一章。谢谢!