作业帮 > 综合 > 作业

函数fx具有一阶连续导数,证明Fx=(1+|sinx|)f(x)在x=0处可导的充要条件是f(0)=0.

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 08:49:16
函数fx具有一阶连续导数,证明Fx=(1+|sinx|)f(x)在x=0处可导的充要条件是f(0)=0.
函数fx具有一阶连续导数,证明Fx=(1+|sinx|)f(x)在x=0处可导的充要条件是f(0)=0.
充分性.
若f(0)=0,则F'(0)=lim(h->0)[(1+|sinh|)f(h)]/h=lim(h->0)f(h)/h=f'(0)
即充分性成立.
必要性.
若F'(0)存在,有F'(0)=lim(h->0)[(1+|sinh|)f(h)-f(0)]/h=lim(h->0)[(f(h)-f(0))/h+|sinh|f(h)/h]
=f'(0)+lim(h->0)|sinh|/h* f(h)
若f(0)≠0,则
在x=0的左邻域,lim|sinh|/h=-1,因此有F'(0-)=f'(0)-f(0)
在x=0的右邻域,lim|sinh|/h=1,因此有F'(0+)=f'(0)+f(0)
这样F'(0-)≠F'(0+),因此F'(0)不存在,矛盾.
因此必要性成立.
再问: 谢谢!看懂了!