作业帮 > 数学 > 作业

a+b+c=1,是否存在实数K,abc都是正实数,使√4a+1 +√4B+1 +√4c+1小于k恒成立?如存在,求K的范

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:34:00
a+b+c=1,是否存在实数K,abc都是正实数,使√4a+1 +√4B+1 +√4c+1小于k恒成立?如存在,求K的范围
a+b+c=1,是否存在实数K,abc都是正实数,使√4a+1 +√4B+1 +√4c+1小于k恒成立?如存在,求K的范
√(4a+1) +√(4b+1)+√(4c+1)显然大于0
平方
=4a+1+4b+1+4c+1+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
=4(a+b+c)+3+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
=7+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
因为2xy