抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁,那么a的取值是______.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:54:53
抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁,那么a的取值是______.
设抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点的坐标分别为(α,0)、(β,0),且α<β
∴α、β是关于x的方程x2-(2a+1)x+2a-5=0的两个不相等的实数根
∵△=[-(2a+1)]2-4×1×(2a-5)=(2a-1)2+21>0
∴a为任意实数①,
由根与系数关系得:α+β=2a+1,αβ=2a-5
∵抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁
∴α<2,β>2
∴(α-2)(β-2)<0
∴αβ-2(α+β)+4<0
∴2a-5-2(2a+1)+4<0
解得:a>-
3
2②
由①、②得a的取值范围是-
3
2<a.
故答案为:-
3
2<a.
∴α、β是关于x的方程x2-(2a+1)x+2a-5=0的两个不相等的实数根
∵△=[-(2a+1)]2-4×1×(2a-5)=(2a-1)2+21>0
∴a为任意实数①,
由根与系数关系得:α+β=2a+1,αβ=2a-5
∵抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁
∴α<2,β>2
∴(α-2)(β-2)<0
∴αβ-2(α+β)+4<0
∴2a-5-2(2a+1)+4<0
解得:a>-
3
2②
由①、②得a的取值范围是-
3
2<a.
故答案为:-
3
2<a.
抛物线y=x2-(2a+1)x+2a-5与x轴的两个交点分别位于点(2,0)的两旁,那么a的取值是______.
已知抛物线=x2+2mx+m -7与x轴的两个交点在点(1,0)两旁
理由 已知抛物线y=-1/2x2+(5-根号m2)x+m-3与x轴有两个交点A,B,点A在x轴的正半轴上,点B在x
已知抛物线y=x^2+2mx+m-7与x轴的两个交点在点(1,0)的两旁,
已知抛物线Y=x²+2mx+m-7与X轴的两个交点在点(1,0)两旁,
如果过两点A(a,0)和B(0,a)的直线与抛物线y=x2-2x-3没有交点,那么实数a的取值范围是______.
如图,抛物线y=ax²+bx+c的对称轴是x=2与x轴交点,分别为位于(-1,0)(4,5)内,a
已知抛物线y=x2+ax+a-2 求抛物线与x轴两个交点间的距离(用关于a的表达式表示)
若抛物线y=ax2+bx+3与y=-x2+3x+2的两交点关于原点对称,则a、b分别为______、______.
已知抛物线y=x2-x与直线y=x+1的两个交点的横坐标分别为a、b,则代数式(a-b)(a+b-2)+ab的值等于__
抛物线与X轴交点的横坐标分别是-1和4与Y轴交于点A(0,2)求该抛物线的解析式
已知抛物线y=x2+(m+4)x-2(m+6)(m为常数,m≠-8))与x轴有两个不同的交点A、B,点A、点B关于直线x