作业帮 > 数学 > 作业

证明方程式x^2cosx-sinx=0在区间(π,3/2π)内至少有一个实根

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 11:15:26
证明方程式x^2cosx-sinx=0在区间(π,3/2π)内至少有一个实根
证明方程式x^2cosx-sinx=0在区间(π,3/2π)内至少有一个实根
设f(x)=x^2cosx-sinx,可以看出函数是连续的,求出其在区间两个端点处的值,
f(π) = -π^20,可以看出,函数在区间端点处取值为异号的,即在已知区间里至少有一个使得函数值为零的点,
又由函数的连续性可知 f(x) 在(π,3/2)内至少有一个实根.
很长时间没做过高数了,不知道对不对,希望可以帮到你……