等差数列an=2n+3,求和:(1/a1a2)+(1/a2a3)+.+(1/anan+1)
等差数列an=2n+3,求和:(1/a1a2)+(1/a2a3)+.+(1/anan+1)
等差数列的前n项和已知等比数列{an}中,a2=2,a5=1/4,求和:a1a2+a2a3+…+anan+1.
已知数列{an},若1/a1a2+1/a2a3+…+1/anan-1=n/anan+1,求证{an}为等差数列.
等差数列{1\an}满足a1=1,公差d=2,求a1a2+a2a3+……+anan+1的和
已知an=2n(n∈N*),则a1a2+a2a3+a3a4+……+anan+1=
已知等差数列an前n项和为Sn,Sn=n^2,求和1/(a1a2)+1/(a2a3)+.+1/[(an-1an] (n≥
数列a1=1,an=an+1(1+2an)求证数列an分之一等差数列,若a1a2+a2a3+..+anan+1大于33分
设{an}是等差数列,且首项a1>0,公差d>0求证:1/a1a2+1/a2a3+…+1/anan+1=n/a1(a1+
已知数列{an}满足a1=1,An+1=an/1+2an(n属于N*) 问若若a1a2+a2a3+……+anan+1>1
数列{an}满足a1=1,1/2an=1/2an+1(n∈N※),若a1a2+a2a3+...+anan+1>16/33
已知数列an的前n项和Sn=2n^2+n,则lim[1/a1a2+1/a2a3+1/a3a4+...+1/anan+1]
数列{an}首项为2,且对任意n∈N*,都有1/a1a2+1/a2a3+...+1/anan+1=n/a1an+1,数列