试确定λ的值,使曲线积分∫(A→B)(x^4+4x*y^3)dx+(6x^(λ-1)*y^2-5y^4)dy与路径无关,
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/07 18:03:33
试确定λ的值,使曲线积分∫(A→B)(x^4+4x*y^3)dx+(6x^(λ-1)*y^2-5y^4)dy与路径无关,
并求当A,B分别为(0,0),(1,2)时曲线积分的值.
并求当A,B分别为(0,0),(1,2)时曲线积分的值.
将原积分看为∫Pdx+Qdy
因为原积分与路径无关
所以P对y的偏导=Q对x的偏导;
P对y的偏导=12xy^2
Q对x的偏导=6(λ-1)x^(λ-2)y^2
12=6(λ-1) 1=λ-2
解得λ=3
取点C(1,0)
则路径AC上,dy=y=0,I1=∫(A→C)(x^4)dx,所以积分值为1/5;
则路径CB上,dx=0,x=1,I2=∫(C→B)(6y^2-5y^4)dy,所以积分值为-16;
所以当A,B分别为(0,0),(1,2)时曲线积分的值=-79/5
因为原积分与路径无关
所以P对y的偏导=Q对x的偏导;
P对y的偏导=12xy^2
Q对x的偏导=6(λ-1)x^(λ-2)y^2
12=6(λ-1) 1=λ-2
解得λ=3
取点C(1,0)
则路径AC上,dy=y=0,I1=∫(A→C)(x^4)dx,所以积分值为1/5;
则路径CB上,dx=0,x=1,I2=∫(C→B)(6y^2-5y^4)dy,所以积分值为-16;
所以当A,B分别为(0,0),(1,2)时曲线积分的值=-79/5
试确定λ的值,使曲线积分∫(A→B)(x^4+4x*y^3)dx+(6x^(λ-1)*y^2-5y^4)dy与路径无关,
证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy
证明曲线积分∫(2,1)—(1,0)(2x-y^2+1)dx+(1-x^2y)dy与路径无关的计算
证明曲线积分∫(xy^2-y^3)dx+(x^2y-3xy^2)dy与路径无关,并计算积分
证明:曲线积分∫L(2xy-y^4+3)dx+(x^2-4xy^3)dy在xoy平面内与路径无关,并计算积分值,其中L为
验证积分I=∫(e^xsiny-2y+1)dx+(e^xcosy-2x)dy与路径无关
设F(x,y)可微,如果曲线积分∫(c) F(x,y)( x dx+ y dy)与路径无关,则F(x,y)应满足什么条件
计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B
计算坐标曲线积分 ∫(3x^2y+αx^2y)dx+(x^3-4x^2y)dy,求α
已知曲线积分 ∫L2xyf(x)dx+[f(x)+x^2]dy的值与路径无关,其中f(x)具有一阶连续导数,且f(0)=
设函数f(x)具有连续导数,且曲线积分 ∫(sinx-f(x))y/xdx+f(x)dy与路径无关,f(派)=1,则f(
(3x+5y)dx+(4x+6y)dy=0 求通积分