设a1,a2...an是Rn的一个基,a∈Rn,证明:若(a,ai)=0,i=1,2...n,则a=0
设a1,a2...an是Rn的一个基,a∈Rn,证明:若(a,ai)=0,i=1,2...n,则a=0
设a1,a2,a3,...an是n维列向量空间Rn的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组
设a1,a2,...an.是n唯欧式空间R的一组基,证明,向量(b1,ai)=(b2,ai),(i=1,2...n.)则
设a,b属于Rn,A为正交矩阵,证明:1:|Aa|=|a|; 2:=.
设ai>0,(i=1,2,...,n)求证:(a1+a2+...+an)/n
设A为n阶正定矩阵,a1,a2.am为n维非零列向量,且ai^TAaj=0,证明:a1,a2.am线性无关
设ai ≥1,i=1,2,...,n,求证:(1+a1)(1+a2)...(1+an) ≥[2^n/(n+1)](1+a
设a1,a2,···an是任意n个整数,证明存在i和k(i>=0,k>=1)使得ai+1+····+ai+k能被n整除.
设A为n阶正定矩阵,a1,a2.am为n维非零列向量,且ai^TAaj=0(i≠j),证明:a1,a2.am线性无关(大
设向量α=(a1,a2,a3……an)ai≠0证明:若A=α^tα则存在常数m,使得A^k=mA求可逆矩阵P 使P^-1
线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值
线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值;