已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 02:59:31
已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列,并求{an}的通项公式
1.
bn=(3an-2)/(an-1)
an=(bn-2)/(bn-3)
a(n+1)=[b(n+1)-2]/[b(n+1)-3]
a(n+1)=(4an-2)/(3an-1)
3a(n+1)an-a(n+1)=4an-2
3{[b(n+1)-2]/[b(n+1)-3]}[(bn-2)/(bn-3)]-[b(n+1)-2]/[b(n+1)-3]=4(bn-2)/(bn-3)-2
3[b(n+1)-2](bn-2)-[b(n+1)-2](bn-3)=4(bn-2)[b(n+1)-3]-2[b(n+1)-3](bn-3)
2b(n+1)bn-3b(n+1)-4bn+6=2b(n+1)bn-2b(n+1)-6bn+6
b(n+1)=2bn
bn=b1*2^(n-1)
b1=(3a1-2)/(a1-1)=4
bn=b1*2^(n-1)=2^(n+1)为比数列;
2.
bn=(3an-2)/(an-1)=2^(n+1)
3an-2=[2^(n+1)]an-2^(n+1)
[3-2^(n+1)]an=2-2^(n+1)
an=[2-2^(n+1)]/[3-2^(n+1)]
bn=(3an-2)/(an-1)
an=(bn-2)/(bn-3)
a(n+1)=[b(n+1)-2]/[b(n+1)-3]
a(n+1)=(4an-2)/(3an-1)
3a(n+1)an-a(n+1)=4an-2
3{[b(n+1)-2]/[b(n+1)-3]}[(bn-2)/(bn-3)]-[b(n+1)-2]/[b(n+1)-3]=4(bn-2)/(bn-3)-2
3[b(n+1)-2](bn-2)-[b(n+1)-2](bn-3)=4(bn-2)[b(n+1)-3]-2[b(n+1)-3](bn-3)
2b(n+1)bn-3b(n+1)-4bn+6=2b(n+1)bn-2b(n+1)-6bn+6
b(n+1)=2bn
bn=b1*2^(n-1)
b1=(3a1-2)/(a1-1)=4
bn=b1*2^(n-1)=2^(n+1)为比数列;
2.
bn=(3an-2)/(an-1)=2^(n+1)
3an-2=[2^(n+1)]an-2^(n+1)
[3-2^(n+1)]an=2-2^(n+1)
an=[2-2^(n+1)]/[3-2^(n+1)]
已知数列{an}中,a1=2,an+1=4an-2/3an-1 bn=3an-2/an-1 求证;数列{bn}是等比数列
已知数列{an}a1=3 an+1=(3an+2)/(an+2) bn=(an-2)/(an+1) 求证bn是等比数列
数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.
数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求{an}通项.
已知数列an中,a1=2,an+1=4an-3n+1,bn=an-n,求证数列bn为等比数列,求an前n项和
数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求其通项.
已知数列{an}中,a1=-1,a2=4,an+2+2an=3an+1 求证:数列{an+1-an}是等比数列,并求{a
已知数列{an}中,a1=2,an+1=3an+2,记bn=an+1,求证:数列{bn}为等比数列
在数列an中,已知a1=2,an+1=2an/an +1,令bn=an(an -1).求证bn的前n项和
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n
已知数列{an}中,a1=3,an+1-2an=0,数列{bn}中,bn*an=(-1)^n (n是正整数) (1)求数