△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD延长线于点E 求证:BD=2CE
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 19:01:13
△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD延长线于点E 求证:BD=2CE
证明:延长CE、 BA交于点F
在RT△BEC和RT△BEF中
因为∠EBF=∠EBC (角平分线)
BE=BE
∠BEF=∠BEC=90°
所以 RT△BEC≌RT△BEF(ASA)
所以CE=EF
所以CF=CE+EF=2CE
因为∠CFA+∠ABD=90°
∠CFA+∠FCA=90°
所以∠ABD=∠FCA
在RT△CAF和RT△BAD中
因为 ∠ABD=∠FCA(已证)
AC=AB (已知)
∠CAF=∠BAD=90°
所以RT△CAF≌RT△BAD(ASA)
所以BD=CF
又因为CF=2CE
所以BE=2CE
希望能帮到你!祝你学习进步,万事如意!
在RT△BEC和RT△BEF中
因为∠EBF=∠EBC (角平分线)
BE=BE
∠BEF=∠BEC=90°
所以 RT△BEC≌RT△BEF(ASA)
所以CE=EF
所以CF=CE+EF=2CE
因为∠CFA+∠ABD=90°
∠CFA+∠FCA=90°
所以∠ABD=∠FCA
在RT△CAF和RT△BAD中
因为 ∠ABD=∠FCA(已证)
AC=AB (已知)
∠CAF=∠BAD=90°
所以RT△CAF≌RT△BAD(ASA)
所以BD=CF
又因为CF=2CE
所以BE=2CE
希望能帮到你!祝你学习进步,万事如意!
△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD延长线于点E 求证:BD=2CE
△ABC是等腰直角三角形,∟A=90°,BD平分∟ABC,交AC于点D,CE⊥BD交BD的延长线于E,求证:BD=2CE
如图,△ABC是等腰直角三角形,其中∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E
如图,三角形ABC是等腰直角三角形,其中角A=90°,BD平分角ABC交AC于点D,CE⊥BD于BD的延长线于点E,求证
△ABC是等腰直角三角形,角A=90度,BD平分角ABC,交AC于点D,CE垂直BD交BC的延长线于E,求证:BD=2C
如图所示,在△ABC中,AB=AC,∠A=90°,BD平分∠ABC交AC于D,CE⊥BD交BD的延长线于点E,则CE=_
已知△ABC是等腰直角三角形.∠BAC=90°,BD平分∠ABC,CE⊥BD交BD延长线于E.
已知:如图,在等腰直角三角形ABC中,∠BAC=90°,BD平分∠ABC,交AC于D,过点C做CE⊥BD,交BD的延长线
等腰直角三角形ABC中,角A是直角,BD是角B的角平分线交AC于点D,CE垂直于BD交BD延长线于点E.求CE=1/2B
在等腰RT三角形ABC中,∠A=90°,AB=AC,BD平∠CBA,CE垂直BD交BD的延长线于点E.求证:BD=2CE
在三角形ABC中.角A等于90度.AB=AC,BD平分角ABC交AC于D,CE垂直BD交BD延长线于点E.求证:BD=2
如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E.