若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:16:14
若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ).求解啊!
设F(x)=f(x+1/n)-f(x)
F(0)=f(1/n)-f(0)
F(1/n)=f(2/n)-f(1/n)
…
F[(n-1)/n]=f(1)-f[(n-1)/n]
那么F(0)+F(1/n)+…+F[(n-1)/n]
=f(1/n)-f(0)+f(2/n)-f(1/n)+…+f(1)-f[(n-1)/n]
=f(1)-f(0)
=0
所以F(0)=F(1/n)=…F[(n-1)/n]=0或存在F(i/n)和F(j/n)符号相反(0≤i
F(0)=f(1/n)-f(0)
F(1/n)=f(2/n)-f(1/n)
…
F[(n-1)/n]=f(1)-f[(n-1)/n]
那么F(0)+F(1/n)+…+F[(n-1)/n]
=f(1/n)-f(0)+f(2/n)-f(1/n)+…+f(1)-f[(n-1)/n]
=f(1)-f(0)
=0
所以F(0)=F(1/n)=…F[(n-1)/n]=0或存在F(i/n)和F(j/n)符号相反(0≤i
若函数f(x)在[0,1]上连续,f(0)=f(1),则对任意自然数n,存在ξ∈[0,1],使得f(ξ+1/n)=f(ξ
函数f(x)在【0,1】上连续,f(0)=f(1),求证对于任意n属于正整数,存在ξ属于【0,1】,满足f(ξ)=f(ξ
设f(x)在[0,1]上连续,且f(0)=f(1)=1/2,证明对任何自然数n>0,在(0,1)内至少存在一点c,使得f
设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,n-1/n],使得 f(x0)=f(x0+
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明:至少存在一点ξ∈(0,1),使得f
难.设函数y=f(x)定义在R上的增函数,当x>0时,f(x)>1,且对任意m,n,有f(m+n)=f(m)*f(n),
设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明存在ξε(0,1),使得f(
设f(x)在[0,x]上连续,在(0,x)内可导,且f(0)=0,证明:存在ξ∈(0,x),使得f(x)=(1+ξ)f’
定义在R上的函数f(x)满足:①对任意实数m.n,都有f(m+n)=f(m)×f(n);②当x>0时,0<f(x)<1
定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)*f(n),且当X>0时,0<f(x)<1
已知函数f(x)对任意x∈R都有f(x)+f(1-x)=1/2若数列an满足an=f(0)+f(1/n)+f(2/n)+
已知函数f(x)对任意x∈R都有f(x)+f(1-x)=2,若数列an满足an=f(0)+f(1/n)+f(2/n)+.