已知函数$f(x)=1/2x^2+lnx$.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 07:11:36
已知函数$f(x)=1/2x^2+lnx$.
已知函数f(x)=1/2x^2+lnx
求证:在区间(1,+oo)上,函数f(x)的图象在函数g(x)=2/3x^3图象的下方;
已知函数f(x)=1/2x^2+lnx
求证:在区间(1,+oo)上,函数f(x)的图象在函数g(x)=2/3x^3图象的下方;
等价于证明g(x)-f(x)>0
h(x)=g(x)-f(x)=2/3x^3-1/2x^2-lnx
h'(x)=2x^2-x-1/x在(1,+oo)上是增函数(可以根据增函数的定义证明)并且h'(1)=0
所以h'(x)>0在区间(1,+oo)上
从而h(x)在区间(1,+oo)上是增函数
而h(1)=2/3-1/2-0=1/6>0
所以h(x)>0在区间(1,+oo)上
即在区间(1,+oo)上,函数f(x)的图象在函数g(x)=2/3x^3图象的下方
其实你也可以直接用定义证明h(x)为增函数,但是那样在化简时有些麻烦.
h(x)=g(x)-f(x)=2/3x^3-1/2x^2-lnx
h'(x)=2x^2-x-1/x在(1,+oo)上是增函数(可以根据增函数的定义证明)并且h'(1)=0
所以h'(x)>0在区间(1,+oo)上
从而h(x)在区间(1,+oo)上是增函数
而h(1)=2/3-1/2-0=1/6>0
所以h(x)>0在区间(1,+oo)上
即在区间(1,+oo)上,函数f(x)的图象在函数g(x)=2/3x^3图象的下方
其实你也可以直接用定义证明h(x)为增函数,但是那样在化简时有些麻烦.