设二维随机变量(X,Y)的概率密度为f(x,y)={ye^[-(x+y)],x.>0,y>0;0其他} 求X与Y相关系数
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:33:38
设二维随机变量(X,Y)的概率密度为f(x,y)={ye^[-(x+y)],x.>0,y>0;0其他} 求X与Y相关系数ρXY
谢谢
谢谢
EX=∫[0,+∞]xe^(-x)dx∫[0,+∞]ye^(-y)dy=1.
E(X^2)=∫[0,+∞]x^2e^(-x)dx∫[0,+∞]ye^(-y)dy=2.
EY=∫[0,+∞]e^(-x)dx∫[0,+∞]y^2e^(-y)dy=2.
E(Y^2)=∫[0,+∞]e^(-x)dx∫[0,+∞]y^3e^(-y)dy=6.
E(XY)=∫[0,+∞]xe^(-x)dx∫[0,+∞]y^2e^(-y)dy=2.
DX=E(X^2)-(EX)^2=1,DY=E(Y^2)-(EY)^2=2.
Cov(X,Y)=E(XY)-(EX)(EY)=0,
ρXY=Cov(X,Y)/[√DX√DY]=0.
只要算出E(XY),E(X),E(Y)就可以知道Cov(X,Y)=0,ρXY=0.一开始没注意,都求出来了,不删了,都放着吧.
这个题也可以先求边缘密度fX(x),fY(y),因为
f(x,y)=fX(x)*fY(y),所以X,Y相互独立,所以ρXY=0.
E(X^2)=∫[0,+∞]x^2e^(-x)dx∫[0,+∞]ye^(-y)dy=2.
EY=∫[0,+∞]e^(-x)dx∫[0,+∞]y^2e^(-y)dy=2.
E(Y^2)=∫[0,+∞]e^(-x)dx∫[0,+∞]y^3e^(-y)dy=6.
E(XY)=∫[0,+∞]xe^(-x)dx∫[0,+∞]y^2e^(-y)dy=2.
DX=E(X^2)-(EX)^2=1,DY=E(Y^2)-(EY)^2=2.
Cov(X,Y)=E(XY)-(EX)(EY)=0,
ρXY=Cov(X,Y)/[√DX√DY]=0.
只要算出E(XY),E(X),E(Y)就可以知道Cov(X,Y)=0,ρXY=0.一开始没注意,都求出来了,不删了,都放着吧.
这个题也可以先求边缘密度fX(x),fY(y),因为
f(x,y)=fX(x)*fY(y),所以X,Y相互独立,所以ρXY=0.
设二维随机变量(X,Y)的概率密度为f(x,y)={ye^[-(x+y)],x.>0,y>0;0其他} 求X与Y相关系数
设二维随机变量(X,Y)的概率密度为f(x,y)=e-x-y x>0,y>0;0,其他.求证明x,y相互独立.
设二维随机变量(X,Y)的概率密度为{f(x,y)=4e^[-2(x+y)],x.>0,y>0;0其他} 求E(xy)
设二维随机变量(X,Y)的概率密度为f(x,y)={e^[-(x+y)],x.>0,y>0;0其他},则当y>0时,(X
设二维随机变量(X,Y)的概率密度为f(x,y)=cxy,0
设二维随机变量(X,Y)的概率密度为f(x,y)=1(0
设二维随机变量(X,Y)的概率密度为f(x,y)=1 0
设二维随机变量(X,Y)的概率密度为f(x,y)=axy,0
设二维随机变量(X,Y)的概率密度f(x,y)=1/2(x+y)e^-(x+y),x>0,y>0;=0 ,其他
设二维随机变量(X,Y)的概率密度为f(x,y)=cx^2y,x^2<y<1 其他为0;
设二维随机变量(X,Y)的概率密度为f(x,y)=2-x-y ,0
设二维随机变量(X,Y)的概率密度为f(x,y)=kx(x-y),0