作业帮 > 数学 > 作业

已知函数f(x)=1/2ax^2-2x+2+lnx,a∈R,若f(x)在(1,+∞)上只有一个极值点,求实数a的取值范围

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 15:01:56
已知函数f(x)=1/2ax^2-2x+2+lnx,a∈R,若f(x)在(1,+∞)上只有一个极值点,求实数a的取值范围
已知函数f(x)=1/2ax^2-2x+2+lnx,a∈R,若f(x)在(1,+∞)上只有一个极值点,求实数a的取值范围
对f(x)求导得f'(x)=ax-2+1/x,令f'(x)=0有:
ax^2-2x+1=0,
(1)由f(x)在(1,+∞)上只有一个极值点可知,f‘(x)=0至少有一个解.
即△x>=0,解得a