作业帮 > 数学 > 作业

已知函数f(x)=1-2a^x -a^2x.求f(x)的值域,若x属于[-2,1]时,函数f(x)=的最小值为-7,求a

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 14:00:43
已知函数f(x)=1-2a^x -a^2x.求f(x)的值域,若x属于[-2,1]时,函数f(x)=的最小值为-7,求a,f(x)最大值
已知函数f(x)=1-2a^x -a^2x.求f(x)的值域,若x属于[-2,1]时,函数f(x)=的最小值为-7,求a
解(1)f(x)=1-2a^x -(a^x)^2=2-(1+a^x)^2,(配方)
∵a^x>0,∴f(1)1,∴当x∈〔-2,1〕时,a^2≤a^x≤a,
∴2-(a+1)^2≤f(x)≤2-(a^2+1)^2,
∴2-(a+1)^2=-7,得a=2.
此时,f(x)的最大值为2-(2^2+1)^2= 7/16.