作业帮 > 数学 > 作业

1.已知x+1∕ y=z+1∕ x=1,求y+1∕ z的值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 00:43:56
1.已知x+1∕ y=z+1∕ x=1,求y+1∕ z的值
2.a.b.c为实数,且ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5,求abc/ab+bc+ca
3.a.b.c互不相等,且a.b.c不为0.a的平方=bc,b的平方=ca,证c的平方=ab a+b+c=0 1/a+1/b+1/c=0
在下不会打分数线,还请亲们将就着看,帮在下想想.
1.已知x+1∕ y=z+1∕ x=1,求y+1∕ z的值
1、由已知条件得:(1)x=1-1/y; (2)1/x=1-z 两式相乘得:1=(1-1/y)*(1-z),化简得y+1/z=1
2、因为ab/(a+b)=1/3,所以两边同求倒得1/a+1/b=3
因为bc/(b+c)=1/4,所以两边同求倒得1/b+1/c=4
因为ca/c+a=1/5,所以两边同求倒得1/a+1/c=5
所以由以上三式相加得1/a+1/b+1/c=6,即(ab+bc+ac)/abc=6
而abc/(ab+bc+ca)=1/6
3、(1)a的平方=bc,b的平方=ca,两式左右相乘,(ab)^2=(ab)*c^2,因为a、b、c均不为0,所以两边同除以ab,得c^2=ab
(2)a^2=bc,b^2=ac,两式相加得:a^2+b^2=(a+b)*c,两边同时加上2ab,得到:(a+b)^2=(a+b)*c+2ab=(a+b)*c+2c^2,移向得:(a+b)^2-(a+b)*c-2c^2=0,所以:{(a+b)-2c}*{a+b+c}=0,若a+b-2c=0,则a+b=2c,两边平方得a^2+2ab+b^2=4c^2=4ab,所以a^2-2ab+b^2=0.即(a-b)^2=0,得到a-b=0,由已知知道a、b、c互不相等,所以a+b-2c不等于0,则a+b+c=0
(3)1/a+1/b+1/c=(bc+ac+ab)/abc,由(2)a+b+c=0,两边平方得a^2+b^2+c^2+2ab+2ac+2bc=0,因为a^2=bc,b^2=ac,c^2=ab,所以3(ab+bc+ac)=0,ab+bc+ac=0,所以1/a+1/b+1/c=(bc+ac+ab)/abc=0